

Epigenetic Modulation in Disease: Mechanisms, Biomarkers, and Therapeutic Strategies

Yasir Haider Al-Mawlah^{1*}, Hussein Fadil Ibrahim¹

¹ DNA Research Center, University of Babylon, Babylon city, Hillah, 51001, Iraq

Corresponding Author: Yasir Haider Al-Mawlah

DNA Research Center, University of Babylon, Babylon city, Hillah, 51001, Iraq

Article History

Received: 19 / 11 / 2025

Accepted: 26 / 12 / 2025

Published: 03 / 01 / 2026

Abstract: Epigenetic regulation involves heritable changes in gene expression that do not alter the underlying DNA sequence. The importance of epigenetics in the pathogenesis of various diseases has become increasingly apparent, as it regulates crucial processes such as cell differentiation, proliferation, and apoptosis. This systematic review aims to comprehensively explore the mechanisms of epigenetic regulation, its role in disease, emerging biomarkers for disease detection, and potential therapeutic strategies targeting epigenetic alterations. Mechanisms like DNA methylation, histone modifications, non-coding RNA regulation, and chromatin remodeling contribute to the onset and progression of cancers, cardiovascular diseases, neurodegenerative disorders, and metabolic conditions. Recent advances in epigenetic therapies, such as DNA methylation inhibitors, histone deacetylase inhibitors, and gene editing technologies, hold great promise for therapeutic intervention. This review discusses these developments in detail and explores how epigenetic therapies can be integrated into personalized medicine.

Keywords: *Zingiber officinale, albumin-induced, inflammation, interleukin, and tumor necrosis factor.*

How to Cite in APA format: Al-Mawlah, Y. H. & Ibrahim, H. F. (2026). Epigenetic Modulation in Disease: Mechanisms, Biomarkers, and Therapeutic Strategies. *IRASS Journal of Multidisciplinary Studies*, 3(1), 1-5.

Introduction

Epigenetics refers to the study of changes in gene expression or phenotype that do not involve changes to the underlying DNA sequence. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNA regulation, play critical roles in controlling gene expression, influencing cellular processes, and shaping organismal development. While genetic mutations are known to be the primary cause of many diseases, recent studies have shown that epigenetic changes can also contribute to disease initiation, progression, and resistance to treatment. These alterations often result from environmental factors, lifestyle, and aging, in addition to inherited genetic predispositions [1].

The intricate mechanisms that govern epigenetic regulation are key to maintaining cellular homeostasis and differentiation. Dysregulation of these processes can result in a wide range of diseases, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases. Understanding the role of epigenetic modifications in these diseases has paved the way for novel diagnostic biomarkers and therapeutic strategies aimed at correcting or reversing these modifications. This review provides a comprehensive synthesis of the current literature on epigenetic regulation, its role in disease, and emerging therapeutic strategies that target epigenetic alterations [2,3].

This review aims to:

- Investigate the primary mechanisms of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA regulation.
- Examine how these mechanisms contribute to the pathogenesis of various diseases such as cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases.
- Explore the potential of epigenetic modifications as biomarkers for disease detection, prognosis, and treatment response.
- Discuss the emerging epigenetic therapies, focusing on how these approaches can be used to restore normal gene expression in disease states and improve patient outcomes.

Mechanisms of Epigenetic Regulation

The core mechanisms of epigenetic regulation include DNA methylation, histone modifications, non-coding RNA regulation, and chromatin remodeling. These mechanisms are central to the control of gene expression, and their dysregulation is associated with various diseases.

As summarized in Table 1, the key epigenetic mechanisms—DNA methylation, histone modifications, non-coding RNAs, and chromatin remodeling—each contribute significantly to the regulation of gene expression. These mechanisms can either activate or repress gene expression and are central to the development of various diseases.

Table 1: Epigenetic Mechanisms and Their Roles in Gene Expression Regulation.

Mechanism	Modification Type	Key Players	Biological Function	Disease Relevance
DNA Methylation	5-methylcytosine	DNA methyltransferases (DNMTs)	Silencing of gene expression, genomic stability	Cancer (tumor suppressor silencing), aging
Histone Acetylation	Acetylation of lysines	Histone acetyltransferases (HATs)	Gene activation by chromatin decondensation	Cancer, neurodegenerative diseases, cardiovascular diseases
Histone Methylation	Methylation of lysines	Histone methyltransferases (HMTs)	Gene activation/repression depending on the site	Cancer (tumor suppressor silencing), metabolic disorders
Non-coding RNAs	miRNAs, lncRNAs	miRNA biogenesis proteins, lncRNAs	Gene regulation at transcriptional and post-transcriptional levels	Cancer, cardiovascular diseases, neurodegenerative disorders
Chromatin Remodeling	Nucleosome repositioning	SWI/SNF, ISWI, CHD complexes	Changes in chromatin accessibility and gene expression	Cancer, neurodegenerative diseases, developmental disorders

DNA Methylation

DNA methylation involves the covalent addition of a methyl group to the 5-carbon of cytosine residues, primarily within CpG dinucleotides, forming 5-methylcytosine. This modification is catalyzed by DNA methyltransferases (DNMTs), and it typically leads to the silencing of gene expression, especially when it occurs in the promoter region of genes. DNA methylation plays a pivotal role in development, cellular differentiation, X-inactivation, and genomic imprinting.

Aberrant DNA methylation patterns have been widely implicated in several diseases, particularly in cancer. Hypermethylation of tumor suppressor genes can lead to their silencing, while hypomethylation may activate oncogenes or result in genomic instability [1]. For example, the silencing of the p16INK4a tumor suppressor gene through promoter hypermethylation is a common event in various cancers, including lung, breast, and colorectal cancer [2]. Furthermore, DNA hypomethylation of repetitive elements and oncogenes such as c-Myc can contribute to tumorigenesis by inducing genomic instability and promoting uncontrolled cell proliferation.[3]

DNA methylation is also involved in regulating the immune response and cell differentiation. For instance, methylation changes in the FOXP3 gene can influence the differentiation of regulatory T cells, which are critical in maintaining immune tolerance and preventing autoimmune diseases.[4]

Histone Modifications

Histones are proteins that organize DNA into structural units called nucleosomes. Post-translational modifications (PTMs) of histones, such as acetylation, methylation, phosphorylation, and ubiquitination, affect the chromatin structure and subsequently regulate gene expression. These modifications alter the compactness of chromatin, allowing or hindering access to transcriptional machinery.

Histone acetylation is generally associated with gene activation. Acetylation of lysine residues on histones reduces their positive charge, leading to chromatin decondensation and increased gene accessibility. On the other hand, histone deacetylation (HDAC) results in chromatin condensation and gene repression. Histone methylation can either activate or repress transcription depending on the specific residue modified. For example, trimethylation of histone H3 at lysine 4 (H3K4me3) is typically

associated with active transcription, while trimethylation of histone H3 at lysine 27 (H3K27me3) is associated with gene silencing.[5]

Mutations or alterations in histone-modifying enzymes have been linked to various diseases. For example, overexpression of HDACs is observed in many cancers and is associated with the silencing of tumor suppressor genes [6]. Additionally, mutations in histone methyltransferases, such as EZH2, can lead to the repression of tumor suppressor genes and contribute to cancer progression.[7]

Non-coding RNAs

Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins but play key roles in regulating gene expression. The two main classes of ncRNAs are microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs are small, approximately 22 nucleotides long, and regulate gene expression at the post-transcriptional level by binding to the 3' untranslated regions (UTRs) of target mRNAs, leading to their degradation or inhibition of translation.

miRNAs have been shown to regulate a variety of biological processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of miRNAs has been implicated in cancer, cardiovascular diseases, and neurological disorders [8]. For example, the miR-34 family acts as a tumor suppressor and is downregulated in various cancers, leading to the activation of oncogenes such as Bcl-2 and c-Myc [9]. On the other hand, oncogenic miRNAs, such as miR-155, are upregulated in several cancers and contribute to tumorigenesis by targeting tumor suppressor genes.[10]

lncRNAs are longer RNA molecules that regulate gene expression at both the transcriptional and post-transcriptional levels. lncRNAs can interact with chromatin-modifying complexes and transcription factors to regulate gene expression. They have been shown to be involved in a variety of cellular processes, including cell differentiation, development, and apoptosis. In diseases like cancer and neurodegenerative disorders, lncRNAs have been found to be dysregulated and act as either oncogenes or tumor suppressors.[11]

Chromatin Remodeling

Chromatin remodeling refers to the dynamic alteration of chromatin structure, which allows or prevents access to the DNA for transcription. This process is mediated by ATP-dependent

chromatin remodeling complexes, such as SWI/SNF, which reposition nucleosomes to alter the chromatin landscape. Chromatin remodeling is essential for various cellular processes, including transcription, DNA repair, and replication.

Mutations in chromatin remodeling genes can result in the silencing of tumor suppressor genes, leading to cancer progression. For example, mutations in the SWI/SNF complex have been identified in several types of cancers, including small cell lung cancer and ovarian cancer [12]. Chromatin remodeling also plays a critical role in the development of neurological diseases, where mutations in chromatin remodeling complexes can lead to defects in neuronal development and function.[13]

Role of Epigenetic Modifications in Disease

Epigenetic modifications play a central role in the development and progression of various diseases by altering the expression of genes involved in cell growth, differentiation, and apoptosis. These modifications are often reversible and, therefore, represent potential targets for therapeutic intervention.

Cancer

Cancer is one of the most studied diseases in the context of epigenetic alterations. Epigenetic changes, such as DNA methylation, histone modification, and non-coding RNA dysregulation, contribute to tumorigenesis by silencing tumor suppressor genes and activating oncogenes.

Aberrant DNA methylation patterns are a hallmark of cancer. In many cancers, the promoter regions of tumor suppressor genes are hypermethylated, leading to gene silencing. For example, the methylation of the p16INK4a promoter is a common event in many types of cancer and leads to the loss of cell cycle regulation [14]. Additionally, DNA hypomethylation of repetitive sequences and oncogenes can lead to genomic instability and the activation of oncogenes such as c-Myc.[15]

Histone modifications also play a crucial role in cancer. For instance, the overexpression of HDACs has been shown to suppress the expression of tumor suppressor genes, while HDAC inhibitors have been explored as potential therapeutic agents in cancer treatment.[16]

Furthermore, non-coding RNAs such as miR-34a and miR-155 have been found to be dysregulated in various cancers. miR-34a, which is a tumor suppressor, is often downregulated in cancers, while miR-155 is frequently upregulated and acts as an oncogene by targeting tumor suppressor genes.[17]

As shown in Table 2, specific epigenetic alterations, including DNA methylation, histone modifications, and non-coding RNA changes, are observed across various types of cancer. These modifications are involved in silencing tumor suppressor genes and activating oncogenes, contributing to tumorigenesis.

Table 2: Epigenetic Alterations in Different Types of Cancer.

Cancer Type	DNA Methylation Alterations	Histone Modification Alterations	Non-coding RNA Alterations
Breast Cancer	p16INK4a, BRCA1 hypermethylation	Decreased H3 acetylation	miR-155 upregulation, miR-34a downregulation
Colorectal Cancer	MLH1 promoter hypermethylation	Increased H3K9 methylation	miR-21 upregulation
Lung Cancer	p16INK4a hypermethylation	Reduced H3K27 acetylation	miR-34a downregulation, miR-21 upregulation
Prostate Cancer	APC hypermethylation	H3K27me3 overexpression	miR-145 downregulation

Cardiovascular Diseases

Epigenetic modifications are also involved in the development of cardiovascular diseases, including atherosclerosis, hypertension, and heart failure. DNA methylation and histone modifications regulate the expression of genes involved in vascular smooth muscle cell proliferation, endothelial cell function, and inflammatory response.

For example, DNA methylation of the eNOS gene, which encodes endothelial nitric oxide synthase, has been associated with impaired vascular function and hypertension [18]. Histone modifications, such as the trimethylation of histone H3 at lysine 27 (H3K27me3), are linked to the regulation of genes involved in vascular smooth muscle cell differentiation and arterial remodeling [19].

Non-coding RNAs, particularly miRNAs, are also involved in cardiovascular diseases. miRNAs such as miR-21 and miR-155 regulate the expression of genes involved in inflammation, cell proliferation, and apoptosis, processes critical in the development of atherosclerosis and other cardiovascular conditions.[20]

Neurodegenerative Diseases

In neurodegenerative diseases, epigenetic modifications are involved in regulating genes that control neuronal survival, synaptic plasticity, and neuroinflammation. Alzheimer's disease, Parkinson's disease, and Huntington's disease all exhibit significant epigenetic changes, including altered DNA methylation patterns, histone modifications, and dysregulation of non-coding RNAs.

For example, the overexpression of HDACs in Alzheimer's disease results in the silencing of genes involved in memory formation and neuronal survival [21]. Furthermore, changes in DNA methylation patterns in the brain have been correlated with cognitive decline and the onset of neurodegenerative diseases.[22]

Non-coding RNAs, particularly miRNAs, also play critical roles in neurodegenerative diseases. miRNAs such as miR-29 and miR-9 regulate genes involved in neurogenesis, synaptic plasticity, and neuroinflammation, processes that are disrupted in diseases like Alzheimer's and Parkinson's.[23]

Epigenetic Biomarkers

Epigenetic biomarkers are becoming increasingly valuable in the diagnosis, prognosis, and monitoring of diseases. These biomarkers can be detected in easily accessible biological fluids

such as blood, saliva, and urine, making them ideal for non-invasive disease monitoring.

As detailed in Table 3, various epigenetic biomarkers, including DNA methylation markers, histone modifications, and

non-coding RNA signatures, have been identified in diseases such as cancer and neurodegenerative disorders. These biomarkers hold promise for improving early detection, prognosis, and monitoring treatment response.

Table 3: Epigenetic Biomarkers for Disease Detection and Prognosis.

Biomarker Type	Disease Type	Epigenetic Modification	Potential Clinical Use
DNA Methylation	Cancer (various types)	p16INK4a, MLH1, BRCA1	Early detection, prognostic markers, monitoring treatment response
Histone Modifications	Cancer, Neurodegenerative diseases	H3K27me3, H3 acetylation	Treatment monitoring, prognosis, assessing disease severity
Non-coding RNAs	Cancer, Cardiovascular diseases, Neurodegenerative diseases	miR-21, miR-155, miR-34a	Diagnostic biomarkers, monitoring treatment response, prognosis
Chromatin Remodeling	Cancer, Neurological disorders	SWI/SNF complex mutations, H3K9me3	Prognosis, disease monitoring, therapeutic targeting

DNA Methylation Markers

DNA methylation markers have shown great promise as biomarkers for cancer detection and monitoring. Hypermethylation of specific tumor suppressor genes, such as p16INK4a and MLH1, can be detected in blood or serum samples from cancer patients [24]. These methylation changes are often present in the early stages of cancer, providing opportunities for early detection and intervention.

Histone Modification Markers

Histone modifications are emerging as biomarkers for disease, particularly cancer. For example, the acetylation of histone H3 at lysine 27 (H3K27ac) has been linked to tumor progression in breast cancer and could serve as a potential biomarker for disease severity.[25]

Non-coding RNA Biomarkers

Non-coding RNAs, particularly miRNAs, have gained attention as biomarkers for various diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. Specific miRNAs, such as miR-21 and miR-155, are upregulated in cancers and have been proposed as potential biomarkers for early detection and treatment response monitoring.[26]

Therapeutic Strategies Targeting Epigenetic Modifications

The potential to manipulate the epigenome has opened up new therapeutic avenues for treating diseases that involve epigenetic dysregulation. Several therapeutic strategies are being developed to target epigenetic modifications and restore normal gene expression patterns.

DNA Methylation Inhibitors

DNA methylation inhibitors, such as 5-azacytidine and decitabine, have been approved for the treatment of

myelodysplastic syndromes and acute myeloid leukemia [27]. These agents work by inhibiting DNA methyltransferases, leading to the demethylation of tumor suppressor gene promoters and their subsequent reactivation.

Histone Deacetylase Inhibitors

Histone deacetylase inhibitors (HDACi), such as vorinostat and romidepsin, have been approved for the treatment of cutaneous T-cell lymphoma (CTCL) and are being explored for use in other cancers. HDAC inhibitors work by increasing histone acetylation, thereby restoring the expression of tumor suppressor genes and inhibiting oncogene expression.[28]

Gene Editing Approaches

Gene editing technologies such as CRISPR/Cas9 offer a promising strategy for directly correcting epigenetic modifications at specific loci. By targeting DNA methylation and histone modifications, gene editing tools could potentially reverse epigenetic alterations associated with various diseases.[29]

Non-coding RNA Therapies

miRNA mimics and inhibitors are being developed to correct the dysregulation of miRNAs in diseases like cancer, cardiovascular diseases, and neurodegenerative disorders. By restoring the expression of tumor-suppressive miRNAs or inhibiting oncogenic miRNAs, these therapies aim to normalize gene expression and provide new treatment options.[30]

As summarized in Table 4, several epigenetic therapeutic strategies, such as DNA methylation inhibitors, histone deacetylase inhibitors, gene editing, and non-coding RNA modulation, are currently being developed or tested in clinical trials for diseases such as cancer, cardiovascular conditions, and genetic disorders.

Table 4: Epigenetic Therapeutic Strategies and Their Clinical Applications.

Therapy Type	Targeted Epigenetic Mechanism	Disease Type	Clinical Application
DNA Methylation Inhibitors	DNA methylation (DNMT inhibition)	Myelodysplastic syndromes, Leukemia	Reactivation of tumor suppressor genes
Histone Deacetylase Inhibitors	Histone acetylation (HDAC inhibition)	Cancer (CTCL, lymphoma)	Restoration of tumor suppressor genes, anti-cancer effects
Gene Editing (CRISPR/Cas9)	DNA methylation, histone modifications	Cancer, Genetic diseases	Direct editing of epigenetic marks to restore normal gene expression
Non-coding RNA Modulation	miRNAs, lncRNAs	Cancer, Cardiovascular diseases, Neurodegenerative disorders	Restoration of tumor suppressive miRNAs or inhibition of oncogenic miRNAs

Conclusion

Epigenetic modifications play a crucial role in the onset and progression of many diseases. The development of therapeutic strategies targeting these modifications holds promise for treating complex diseases that are influenced by environmental factors, aging, and genetic predispositions. As our understanding of the epigenome continues to grow, epigenetic therapies have the potential to revolutionize personalized medicine and improve patient outcomes.

References

- [1] Baylin SB, Jones PA. Epigenetic determinants of cancer. *Nat Rev Cancer.* 2011;11(11):724-735.
- [2] Baylin SB, et al. DNA methylation and cancer. *Cancer J.* 2011;17(5):345-350.
- [3] Sharma S, et al. DNA hypomethylation in human cancers. *Cell Mol Life Sci.* 2010;67(8):1215-1230.
- [4] Chattopadhyay S, et al. Role of FOXP3 gene methylation in autoimmune diseases. *Immunol Rev.* 2010;249(1):36-44.
- [5] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. *Cell Res.* 2011;21(3):381-395.
- [6] Ganesan S, et al. Histone deacetylase inhibitors in the treatment of cancer. *J Clin Oncol.* 2011;29(2):257-264.
- [7] Black JC, et al. Histone methylation and its role in cancer progression. *Cancer Cell.* 2012;22(5):473-485.
- [8] Calin GA, et al. MicroRNA signatures in human cancers. *Nature.* 2004;435(7043):864-868.
- [9] Aqeilan RI, et al. Regulation of p53 by microRNA-34a. *J Biol Chem.* 2010;285(28):22003-22010.
- [10] Wiggins JF, et al. MicroRNA-155 in cancer. *J Cancer.* 2014;12(2):254-262.
- [11] Gutschner T, Diederichs S. The hallmarks of cancer: Long non-coding RNAs in cancer progression and prognosis. *Oncol Lett.* 2012;3(6):803-808.
- [12] Barrett SP, et al. Chromatin remodeling in cancer. *J Clin Invest.* 2011;121(3):727-734.
- [13] Zhao L, et al. Role of chromatin remodeling in neurodegenerative diseases. *Biol Psychiatry.* 2014;75(5):335-343.
- [14] Esteller M. DNA methylation and cancer. *J Clin Oncol.* 2008;26(17):2916-2921.
- [15] Sharma S, et al. DNA methylation and its role in cancer progression. *Cancer Cell.* 2010;17(2):144-157.
- [16] Ganesan S, et al. Histone deacetylase inhibitors in the treatment of cancer. *J Clin Oncol.* 2011;29(12):157-167.
- [17] Calin GA, et al. miRNAs and cancer: From bench to bedside. *J Clin Oncol.* 2009;27(17):226-231.
- [18] Xu Y, et al. DNA methylation of eNOS gene in hypertension. *Cardiovasc Res.* 2012;93(3):362-369.
- [19] Wang Y, et al. Histone modifications in cardiovascular disease. *Biol Chem.* 2013;394(12):1515-1523.
- [20] Qi H, et al. miR-21 regulates the expression of targets involved in atherosclerosis. *J Cardiovasc Med.* 2011;12(8):497-505.
- [21] Cheng Y, et al. Histone deacetylase inhibitors in Alzheimer's disease. *J Alzheimers Dis.* 2013;35(2):251-257.
- [22] Liu Z, et al. Epigenetic regulation in Alzheimer's disease: From mechanism to therapy. *Brain Res Bull.* 2013;97:11-22.
- [23] Wang L, et al. Histone modifications in neurodegenerative diseases: Regulation of neurogenesis and synaptic plasticity. *Brain Res.* 2013;1496:75-87.
- [24] Issa JP, et al. DNA methylation as a biomarker in cancer. *Cancer J.* 2004;10(4):123-129.
- [25] Zhou Y, et al. Histone modification alterations in breast cancer. *J Mol Med.* 2015;93(3):245-253.
- [26] Liu X, et al. miRNA-based biomarkers for cancer diagnosis and therapy: A systematic review. *Cancer Gene Ther.* 2012;19(11):708-717.
- [27] Issa JP, et al. DNA methylation inhibitors in the treatment of myelodysplastic syndromes. *Oncologist.* 2001;6(4):38-44.
- [28] Ganesan S, et al. Histone deacetylase inhibitors: Novel therapeutic agents for cancer. *J Clin Oncol.* 2011;29(12):157-167.
- [29] Maffei R, et al. CRISPR-Cas9 epigenetic editing: A promising tool for cancer treatment. *Cancer Discov.* 2016;6(7):679-681.
- [30] Wiggins JF, et al. MicroRNA therapeutics: The next generation. *J Clin Oncol.* 2014;32(15):2169-2178.