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Abstract: Downscaling is a quantitative way of relating the large-scale climatic predictor 

variables to the local scale meteorological variables to overcome the ineffectiveness of the GCM 

model output. However, despite the high relevance and sophistication of this new method in 

climatological studies, the results are not completely free of uncertainties. The aim of the study 

was to assess the level of uncertainties associated with rainfall projection using statistical 

downscaling techniques under climate change scenarios over the south-south region, Nigeria. 

The expost-facto research design was adopted for the study while the quadrat sampling 

technique was used to determine the sample size by stratifying the area into 2° x 2° latitude and 

longitude intersections and each weather station that fall within the grids (Asaba, Warri, Uyo and 

Port Harcourt) was calibrated and selected for the study. Data used for this study were mainly 

secondary data and it includes 30 years rainfall data (1985-2015) which was acquired from the 

archives of Nigerian Meteorological Agency (NiMet) and large-scale predictors assessed from 

the archives of the National Centre for Environmental Prediction (NCEP). The Multiple 

Regression Analysis was used in the selection of large-scale predictors with strong relationship 

with the predictand. Consequently, shum, rhum, r850, r500, p5_u, p_u, & p5th were selected as 

the principal large-scale predictors of rainfall in the area. On the other hand, Wilcoxon signed 

rank test was employed to perform the uncertainty analysis and the results shows uncertainty 

associated with rainfall projections in the area at P<0.05 in some of the months. The validation 

process reveals R and RMSE ranging between, R (0.64-0.91) and RMSE (0.11-0.43) indicating a 

better performance of the model on seasonal timescale particularly in Asaba at DJF, Warri in 

JJA while Port Harcourt and Uyo in SON. Based on the findings of the study, development of a 

local climate management system in preparedness for climate change, climate change planning 

and policy formuations and committed efforts to maintain B2 scenario with reduced GHG‟s 

emission were recommended. 
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Introduction  

Rain is liquid water in form of droplets that have condensed 

from atmospheric water vapour, it then becomes heavy enough to 

fall under gravity. Rain is not only the most popular form of 

precipitation, but also the most variable component of the climate 

system and has a vital role in equal balancing of surface and sub-

surface water resources through the hydrologic cycle process in 

nature. Rainfall is a vital weather element which can give 

information on the state of an environment (Afangideh et al., 

2010). In a related development, rainfall is an important weather 

and climate parameter that affects socio-economic livelihood of 

people within the global community. It is one of the most 

important climatic variables because of its two-sided effects - as a 

deficient resource, such as droughts and as a catastrophic agent, 

such as floods. It is believed that the climate system will continue 

to change under the prevailing human activity and that humanity 

will be faced with more of these extreme events (Yang et al., 

2011). This situation therefore prompts the increasing concern and 

studies on changes in frequency, intensity, and/or magnitude of 

such events in the past and for estimating climate that will occur in 

the future. Thus, Global Climate Models (GCMs) are essential to 

study global patterns of temperature, precipitation, and upper-

ocean heat content in response to changes in the concentration of 

greenhouse gases and variations in the composition of the 

atmosphere, Intergovernmental Panel on Climate Change (IPCC), 

(2021). General Circulation Models (GCMs) are the main state-of-

the- science source for information about future climate change. 

However, the outputs from GCMs tend to be spatially coarse and 

biased for application at local scales (Benestad, 2010; Di Luca et 

al., 2012; Li et al., 2010; Mehrotra & Sharma 2010; Piani et al., 

2010; Shiru et al., 2019). Although, there is essential 

advancements in GCMs application with satisfactory results, it 

exhibits uncertainties when it comes to simulating climate 

variables, particularly with respect to annual and seasonal 

variations (IPCC, 2013; Kundzewicz et al., 2018). Due to their 

coarse spatial resolutions, GCMs are inadequate to simulate 

regional-scale temperature, precipitation, cloud and aerosol 

processes, and climate of mountainous and coastal regions (IPCC, 
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2013; Flato et al., 2013). Additionally, GCMs also have limitations 

when it comes to reproducing cloud cover and are characterized by 

overestimation of heavy precipitation events, wet days, and 

underestimation of dry days frequencies (IPCC, 2013; 

Woldemeskel et al., 2015). As a result, it is recommended to 

downscale GCM simulations to regional, basin, and watershed 

scales in order to obtain good quality climate information from 

GCMs for use in climate change and impact studies. Downscaling 

techniques are used to improve the spatial resolution and correct 

systematic biases in climate projection data (Ali et al. 2019; 

Gudmundsson et al., 2012). This method is considered to be more 

useful than General Circulation Models for assessing impacts of 

climate change scenarios at a higher resolution, by forging a 

mathematical relationship between large scale predictors and 

predictand(s). However, despite the high relevance and 

sophistication of this new method in climatological studies, rainfall 

is a random hydrologic event whose occurrence cannot be 

predicted with certainty especially in the developing world making 

uncertainties an important aspect of consideration in climate 

change studies as effort are made to achieve more reliable results 

through climate modeling (Semenov & Stratonovitch 2010). It is 

on this note that this study aims at dismantling uncertainties 

associated with rainfall projection particularly when the 

downscaling procedures is involved over the study area. 

Materials and Methods 

Description of the Study Area 

This study was carried in the South-South region located in 

the Niger Delta region of Nigeria and lying between latitudes 

3°25'30"N – 8°28'30"N and longitudes 5°10'0"E – 9°22'30"E. It is 

one of the six geopolitical zones in Nigeria, signifying both the 

geographic and political districts of east coast of Nigeria. The 

ecosystem of the area is highly diverse and supportive of numerous 

species of terrestrial and aquatic flora and fauna and human life. 

According to Food and Agriculture Organization, (2001), the 

region is divided into four ecological zones namely freshwater 

zone, coastal inland zone, lowland rain forest zone and mangrove 

swamp zone. Lambin, (2002), pointed out that the South-South has 

the largest mangrove swamps in Africa, with its stagnant swamp 

covering about 8600 squares, and about 2,370 square kilometers of 

the area consist of estuaries, creeks and rivers. It covers over 

70,000km2 and constitutes about 7.5% of Nigeria's land mass. With 

a total annual rainfall varying from 2400mm to 4000mm within 

West Africa. The monsoon wet (rainy) season over the area begins 

in May, as result of the seasonal northward movement of the 

Intertropical Convergence Zone (ITCZ), with termination in 

October (Myers et al., 2010). The region is dominated by mining 

activity (petroleum) and has about 70% of its population living in 

rural areas. Rain-fed agriculture is the major means of sustenance 

of the people. The region is swayed by the localized convection of 

the West African monsoon with less contribution from the 

mesoscale and synoptic system of the Sahel (Thomas & Baltzer, 

2002). Although, the study area is situated in the southern part of 

Nigeria comprising six states; Akwa Ibom, Delta, and Rivers were 

the sampled states as shown in Figure 1.  

 

Figure 1: Study area - South-South States 

  



IRASS Journal of Multidisciplinary Studies Vol-2, Iss-9 (September-2025): 34-43 
 

Vol-2, Iss-9 (September-2025) 

36 

Downscaling Procedure 

The main tool for providing insights into possible future 

climate change is climate modelling. Climate models are 

mathematical models that stimulate the behaviour of Earth 

climate system (atmosphere, hydrosphere, lithosphere, 

cryosphere and biosphere) based on the fundamental laws of 

physics. Climate models are important tools for improving our 

understanding and predictability of climate behaviour on 

seasonal, annual, decadal and centennial time scales. Of all the 

known climate models, the General Circulation Models 

(GCMs) are the most important and are the main tools used for 

projection of global climate into the future and as well as 

important tools to assess potential impacts of global climate 

warming (Gagnon, Singh, Rousselle & Roy, 2005). General 

Circulation Models are computer models that mathematically 

represent various physical processes of the global climate 

system. As a result, GCM based projections may not be robust 

for local impact studies. To overcome this problem 

downscaling techniques have been developed which take the 

large-scale predictions provided by a GCM and apply methods 

to extract implied climate change information at more 

regional/local scales. Furthermore, downscaling is used to 

converting the coarse spatial resolution of the GCMs output 

into a fine resolution which can involve generating point/station 

data of a specific area by using the GCM climatic output 

variables (Wilby & Wigley 1997; Dawson & Wilson 2007; 

Fowler et al., 2007). According to Mekonnen & Schumitter, 

downscaling requires at least 30 years of observed data for the 

base term is essentially carried out according to the following 

procedural steps; Quality control and data transformation, 

screening of predictor variables, model calibration, weather 

generation, statistical analyses, graphing model output and 

scenario generation as shown in Figure 2. 

 

Figure 2: Flow chart showing steps involved in downscaling and scenario generation (modified from Wilby & Dawson, 2007). 

Selection of Large-Scale Predictors used in the Study 

Predictor selection is an important aspect of downscaling. It 

usually involves identifying relationships between climate 

variables and daily rainfall from each meteorological station to 

gather an appropriate set of predictors (Huang et al., 2011). The SP 

method was established by Mahmood & Babel (2012) and uses the 

results from the SDSM function to consider the correlation 

coefficient, partial correlation coefficient, and p-value and it has 

been adopted in several studies for variable selection (Singh et al., 
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2015; Pathan & Waikar 2020; Ahsan et al., 2021). According to 

(Khadka & Pathak 2016), multicollinearity between more than two 

independent variables can be reduced by selecting variables using 

this method. The Correlation coefficients (R) were calculated 

between the 26 NCEP variables and rainfall and empirical 

relationships between selected large-scale indices of the NCEP 

dataset and local variables were generated using multiple linear 

regression and their regression parameters produced during the 

process of calibration. Finally, future climates were then predicted 

using the scenario generator operator in the SDSM. In this study, 

the SDSM model was set up following the instructions of Wilby & 

Dawson (2007) presented in Figure 2; this application was also 

employed in the works of Mekonnen & Disse (2018), Molina & 

Bernhofer (2019), and Hassan & Hashim (2020). The investigation 

revealed (shum, rhum) as super predictors showing significant 

correlation with the measured rainfall for all stations, whereas 

(shum, rhum, r850 and r500) demonstrated correlations with three 

stations. In a related development, P5_u showed a strong 

relationship with rainfall data obtained from two stations while P_u 

and P5th were observed to show significant relationship with the 

predictand at one station as displayed in Table 1.  

Table 1: Selected Large-Scale predictors in the study area 

Stations                  Predictors  Coefficients 

Asaba  Shum 0.70 

  Rhum 0.71 

  r850 0.78 

 

 

Warri  

 

 

 

Uyo 

 

 

 

 

Port Harcourt 

 

 

 r500 

P5th 

shum 

r850 

P5_u 

P_u 

Shum 

Rhum 

r850 

r500 

P5_u 

Shum 

Rhum 

r850 

r500 

0.70 

0.74 

0.66 

0.74 

0.73 

0.59 

0.67 

0.66 

0.72 

0.64 

0.71 

0.69 

0.70 

0.77 

0.68 

Calibration and Validation of the Statistical Downscaling 

Model 

After successfully screening the variables using the 

methods itemized and presented in Figure 2, the process of 

calibration was continued using the selected variables of NCEP 

and daily rainfall observations within the period 1985–2000 and 

regression parameters were generated. The parameters together 

with the NCEP variables and the other part of the measured daily 

rainfall covering 2001–2015 were then employed in the weather 

generator function for the validation step. The scenario generator 

operation was then applied using the selected predictors supplied 

by HadCM3 for either historical or future climate to generate daily 

simulated rainfall. The Root Mean Square Error (RMSE), the 

coefficient of determination (R2), and Ratio of Standard Deviation 

(RSD) was calculated and used to test the model‟s performance in 

consonance with other studies which studies such as (Hassan & 

Harun (2012), Dibike & Coulibaly, (2005), Yadav et.al., (2010), 

Wilby & Dawson, (2013), Goyal et al. (2012), Hassan et al. 

(2014). It is important to mention that the model was segmented 

into four seasons December, January, February (DJF); March, 

April, May (MAM); June, July, August (JJA) and September,  

October, November and its performance between the observed and 

simulated predictand based on NCEP predictors for both 

calibration and validation periods was measured on a seasonal time 

scale. 

The calibrated data were then used to generate 
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Where: Obs = observed data value 

Pred = predicted data value 

    = mean observed data value 

     = predicted mean data. 

The summary of the results of the validation indices of the sub-

model for seasonal rainfall predictions presented in Table 2 shows 

the values of R and RMSE and it ranges between 0.63-0.96 and 

0.11- 0.42 respectively at p> 0.05 which indicate that there is a 

significant relationship between the simulated and observed data 

for the period of validation (2001-2015) at the sub- seasonal 

timescale. 
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Table 2: Validation of SDSM for Seasonal Rainfall Projection 

Station Scale of 

SDSM  

Rainfall 

seasons 

R r2 RMSE RSD P value at 

0.05 

        

Asaba Seasonal DJF 

MAM 

JJA 

SON 

0.91 

0.72 

0.83 

0.74 

0.83 

0.52 

0.69 

0.55 

0.20 

0.37 

0.21 

0.31 

0.72 

0.89 

1.20 

0.22 

0.00 

0.00 

0.00 

0.00 

Portharcourt Seasonal DJF 

MAM 

JJA 

SON 

0.64 

0.75 

0.86 

0.91 

0.41 

0.56 

0.74 

0.83 

0.42 

0.41 

0.23 

0.11 

0.88 

1.00 

1.02 

1.11 

0.00 

0.00 

0.00 

0.00 

Uyo Seasonal DJF 

MAM 

JJA 

SON 

0.72 

0.69 

0.68 

0.91 

0.52 

0.48 

0.46 

0.83 

0.41 

0.43 

0.42 

0.25 

0.12 

0.23 

1.03 

0.11 

0.00 

0.00 

0.00 

0.00 

Warri Seasonal DJF 

MAM 

JJA 

SON 

0.75 

0.69 

0.91 

0.87 

0.56 

0.48 

0.83 

0.76 

0.32 

0.37 

0.21 

0.36 

1.79 

0.23 

0.73 

0.76 

0.00 

0.00 

0.00 

0.00 

        

R- stand for correlation coefficient between simulated and observed data; r2- coefficient of determination; RMSE- root mean square 

error, RSD- ratio of standard deviation 0.05 P value – alpha for significance between simulated and observed data set. 

The high values of R and low values of RMSE sufficiently 

explains the model‟s predictive ability. However, the model is 

concluded to provide a better performance in Asaba in DJF, Warri 

(MAM) in JJA while Port Harcourt and Uyo perform better in 

SON. The results on the basis of the R and RMSE values shows the 

performance of SDSM for accurately developing long-term mean 

rainfalls and has the capacity to predict rainfall in the region on a 

seasonal timescale and agrees with the recommendation of 

Mekonnen & Disse (2018) to be selected as the best model for 

achieving rainfall downscaling. 

Observed and Modelled Seasonal Rainfall for the area. 

The record of the observed and modeled rainfall data for 

the seasons DJF, MAM, JJA and SON is presented in Table 3 and 

it is clear that the validation record shown in Table 2 is valid 

indicating that the model sufficiently captures the local data 

characteristics for rainfall in the areas and that the observed and 

simulated data within the period of validation sufficiently matches.  

From Table 3, it is clear that the observed and simulated data 

within the period of validation sufficiently matches with the 

following results: Warri observed data in SON is 292.2mm while 

the simulated is 290.5mm. in the same vein, it is noted that in JJA, 

modelled data for Asaba records only 1.9 mm higher than the 

observed whereas the simulated in Uyo stands at 6.7mm higher 

than the observed in SON and the observed is merely 0.6mm 

higher than the modelled in Port Harcourt in the same season. On 

the other hand, MAM shows that observed data for Asaba is 

2.4mm higher than simulated whereas for the same sub-seasonal 

timescale Port Harcourt records for observed is 0.9mm above the 

modelled. In JJA, Warri observed data is 4.2mm higher than the 

simulated and the observed is lower than the modelled data by 

1.4mm in Port Harcourt within the same season. The records for all 

the stations within the season timescale investigated reveals no 

significant difference between the observed and simulated data 

suggesting that the data sufficiently matches affirming the 

validation earlier done. 

Table 3: Summary of Observed and Modelled Seasonal Rainfall Data for the area 

Station  Source  Warri Asaba Uyo Port Harcourt 

DJF Observed  37.1 34 25.6 33.3 

Modeled  36.7 33.5 24.9 33 

MAM Observed  205.9 190.3 204.9 178.6 

Modeled  204.6 187.9 204.2 177.7 

JJA Observed  403.7 349.2 356.6 320.6 

Modeled  399.5 349.5 358.5 322.5 

SON Observed  292.2 261.1 253.4 234.8 

Modeled  290.5 263.2 260.1 234.2 

Method of Data Collection and Analysis 

 The data for this study were acquire from two major 

secondary sources and for this reason the expost-facto research 

design was adopted in this study. The data used includes 30 years 

rainfall data from 1985 - 2015 acquired from the records of the 

Nigerian Meteorological Agency as well as large scale predictors 

and this was assessed from the archive of working groups such as  

Hadley Centre for Global Climate model version 3 (HadCM3) and 

National Centre for Environmental Prediction (NCEP) reanalysis 

project. Rainfall data used for this study was for one climatic 

normal (1985-2015) and this is so because apart from being the 

maximum data field limit for operationalizing the SDSM as 

proposed by the builder of the model, 30 years period has also been 

recommended as the minimum requirement for climate studies 

(IPCC, 2007). The quadrat sampling technique was used in this 
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study by stratifying the area stratified into 2° x 2° latitude and 

longitude intersections and on the basis of the stratification (Asaba, 

Warri, Uyo and Port Harcourt) local meteorological stations that 

fall within the grids calibrated were selected for the study. The 

Wilconsin signed rank test which is suitable for comparing two 

related samples or paired observations was employed in this study 

for purposes of addressing the issues of uncertainty which is a 

fundamental challenge associated with climate prediction. 

Results and Discussions 

Uncertainty Analysis 

GCM outputs based on the Special Report on Emission 

Scenarios (SRES) have been used extensively to project future 

meteorological variables for use as inputs into hydrological models 

at a regional scale (Kour et al., 2016). Large-scale averages with 

little spatial reliability from GCMs characterize the direct 

representations of hydrological quantities for specific regions. In 

assessing climate change, there are also many sources of 

uncertainty which is categorized into two broad groups such as 

uncertainties related to dynamic structure of GCMs and that related 

to amount of greenhouse gas emissions (Covey et al., 2003). 

Therefore, in order to achieve more reliable results uncertainties 

are considered very important in climate change studies (Semenov 

& Stratonovitch, 2010). Uncertainty issues in downscaling models 

have received much attention in recent times in view of its great 

effects on climate prediction and further on decision making.  

Following the fact that the confidence on the reliability of 

the climate change anomalies computed from the scenarios is 

dependent on the downscaled outputs‟ ability to represent the 

baseline climate (Dibike et al., 2008). The uncertainty analysis was 

performed to establish confidence in the downscaled data from 

GCM scenario outputs. Therefore, the evaluation of the 

performance of the downscaling method in reproducing the mean 

and variability of the observed rainfall by comparing downscaled 

rainfall provided with climate predictors with station-observed 

rainfall from 1986-2015 was done and the relative uncertainties in 

downscaled HadCM3 rainfall was assessed on the basis of its 

ability to simulate seasonal cycles in comparison to the mean 

seasonal cycle of the observed rainfall.  The test results (p-values) 

of the Wilcoxon Signed Rank sum test for the difference of the 

means of observed and simulated rainfall data together with the 

observed HadCM3 rainfall data at the 95% confidence level at a 

monthly scale are shown on the respective tables for all the stations 

in the study area. 

In Table 3, the uncertainty information of the projections 

made by the model based on the observation period at Warri 

station is displayed. In the Table the observed and simulated data is 

paired and the hypothesis which states that, „there is no significant 

difference between the simulated data and observed data is tested 

to verify if there are uncertainties. 

Table 3: Rainfall Uncertainty Analysis for Warri 

Months  HadCM3 A2 Scenario B2 Scenario 

January  0.241 0.221 0.317 

February 0.311 0.031 0.067 

March 0.112 0.334 0.050 

April 0.112 0.412 0.070 

May 0.103 0.115 0.121 

June 0.312 0.224 0.223 

July 0.110 0.113 0.112 

August 0.023 0.061 0.219 

September 0.221 0.551 0.112 

October 0.115 0.110 0.105 

November 0.210 0.212 0.089 

December 0.121 0.114 0.541 

On the other hand, if any significant difference exists 

between the simulated and observed data, it implies that there are 

some uncertainties that may be peculiar to that particular station. 

Consequently, uncertainty only exist in the month of August at 

p<0.05 (0.023) and for A2 scenario uncertainty exist in the month 

of February at p<0.05(0.031) while for B2 scenario there are no 

uncertainties. This suggests that the said prediction is valid for 

Warri at 95% confidence level for all other months except the 

month of August. This also indicates that the use of the A2 

scenario for projected period for August should be used with  

caution as it may not capture the exact situation. Again, the month 

of February under the A2 scenario reveals that the projection for 

that month may not represent the reality because of the existing 

uncertainties. 

The uncertainty result of the projections made by the model 

for Port Harcourt is presented in Table 4 and the analysis reveals 

that uncertainties exists in the months of October at p<0.05 (0.006) 

and April under the A2 scenario at p<0.05 (0.023) and in the month 

of December under the B2 scenario at p<0.05 (0.039). 
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Table 4: Rainfall Uncertainty Analysis for Port-Harcourt 

Months  HadCM3 A2 Scenario B2 Scenario 

January  1.121 0.102 0.231 

February 0.362 0.231 1.231 

March 2.210 1.207 0.991 

April 0.171 0.023 1.231 

May 0.341 0.241 0.451 

June 0.211 0.112 0.921 

July 0.231 0.521 0.234 

August 0.351 2.411 0.251 

September 0.122 0.123 0.052 

October 0.006 0.501 0.921 

November 0.231 2.871 0.712 

December 1.102 0.769 0.039 

The p-values are above 0.05 for all months except for these 

months, October, April and December under scenarios A2 and B2 

respectively. This finding reveals that the null hypothesis was not 

rejected; suggesting that observed and SDSM simulated estimates 

were statistically significant for every month except October, April 

and December. For these months, the null hypothesis was rejected 

because the p-values were below the critical value of 0.05. This 

implies that the prediction is true for Port Harcourt station and at 

95% confidence level for all other months except for October, 

April and December. This also reveals that the accuracy of the 

model‟s prediction for the months of October, April and December 

under scenarios A2 and B2 respectively is not guaranteed as it may  

not capture the true situation. Hence projections result for those 

months within the projected period need to be used with absolute 

caution. 

The uncertainty results of the projections for Uyo as 

revealed by the model is clearly displayed in Table 5 and the 

simulated data and observed data is tested to verify if there are 

uncertainties. It is obvious as reported in the Table that there are 

some uncertainties and that is captured in the months of October at 

p<0.05 (0.002) and also in the month of March under the A2 

scenario at p<0.05 (0.017) while under the B2 scenario 

uncertainties exist in the month of May at p<0.05 (0.021).   

Table 5: Rainfall Uncertainty Analysis for Uyo 

Months  HadCM3 A2 Scenario B2 Scenario 

January  0.111 0.707 0.231 

February 0.842 0.831 1.231 

March 2.711 0.017 0.991 

April 0.971 0.823 1.231 

May 0.341 0.241 0.021 

June 0.211 0.512 0.921 

July 0.231 0.721 0.234 

August 0.379 1.411 0.059 

September 1.822 0.123 0.062 

October 0.002 1.541 0.121 

November 3.231 1.671 0.412 

December 0.912 1.023 0.159 

The p-values are above 0.05 for all months except for the 

months October, March and May. This finding reveals that the null 

hypothesis was not rejected; suggesting that observed and SDSM 

simulated estimates were statistically similar for every month 

except October, March and May. For these months, the null 

hypothesis was rejected because the p-values were below the 

critical value of 0.05. This implies that the prediction is accurate 

for Uyo station and at 95% confidence level for all other months 

except for October, March and May. This also reveals that the 

accuracy of the model‟s prediction for the month of October,  

March and May did not capture the true situation in Uyo in those 

stations. Hence the projection results for these months within the 

projected period need to be used with absolute caution under the 

corresponding emission scenarios as shown in table 5 above. 

Table 6 shows the uncertainty results of the projections 

made by the model at Asaba evidently, uncertainties are observed 

in the months of May and June at p<0.05 (0.031 and 0.001) 

respectively whereas uncertainties are observed in the month of 

September under the B2 scenario at p<0.05 (0.001) and none under 

the A2 scenario. 
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Table 6: Rainfall Uncertainty Analysis for Asaba 

Months  HadCM3 A2 Scenario B2 Scenario 

January  0.331 0.117 0.364 

February 0.312 0.153 0.117 

March 0.611 0.317 0.891 

April 0.151 0.723 0.431 

May 0.031 0.241 0.951 

June 0.001 0.212 0.621 

July 2.286 0.321 0.634 

August 1.451 0.221 0.891 

September 0.322 0.203 0.001 

October 0.892 2.371 1.751 

November 0.233 0.671 0.318 

December 0.214 0.191 0.129 

The p-values are above 0.05 for every other month except 

for May, June and September. This finding reveals that the null 

hypothesis was not rejected; suggesting that observed and SDSM 

simulated estimates were statistically similar for every month 

except May and June. For these months within the projected 

period, the null hypothesis was rejected because the p-value was 

below the critical value of 0.05. This implies that the prediction is 

accurate for Asaba station and at 95% confidence level for all other 

months except for May and June. This also reveals that the 

accuracy of the model‟s prediction for the month of September 

under the B2 scenario may not capture the true situation in Asaba.  

It is also implied that using the B2 scenario to predict for May and 

June at Asaba station may not produce accurate result hence the 

results for these months within the projected period need to be used 

with extreme caution. Accuracy in downscaling, using multiple 

linear regression techniques as in SDSM, is based largely on the 

assumption of predictor-predictand relationships (Wilby & 

Dawson, 2007). However, the physical processes of the 

atmosphere make the prediction of weather variables by GCMs 

very uncertain owing to complexity. Downscaled scenarios in this 

study were generated using the HadCM3 model. Therefore, to 

establish confidence in the projected rainfall data downscaled from 

GCM scenario outputs and depend on the projection results to give 

explanation to changes in climate variables, it was important that 

the downscaled outputs reasonably represent the current state of 

the rainfall conditions in the area. In fact, the confidence on the 

reliability of the climate change anomalies computed from the 

scenarios run depend on the downscaled outputs‟ ability to 

represent the baseline climate (Dibike et al., 2008). In order to 

have a dependable projection outputs that can be used for planning 

and other decision on climate change considerations, the 

uncertainty test was performed using the Wilcoxon Signed Rank 

test (Wilcoxon, 1945) which is one of the best nonparametric 

methods for conducting hypothesis tests (Conover, 1980) and 

widely used in uncertainty analysis of downscaled climate 

parameters provided with predictor scenarios of the GCMs (Dibike 

et al., 2008; Khan et al., 2006 a,b).The  model provided that the 

output was dependable based on the quality of results revealed. 

However, uncertainties were revealed in some months at some 

stations for the period under review and under the two scenarios 

using the HadCM3 were p< 0.05 which implies that the result for 

those months should be used with caution as they might not 

capture the exact situation in the area. Therefore, in Warri 

uncertainty is revealed in February under the A2 at p< 0.031. 

Similarly, Port Harcourt shows uncertainties in the month of 

October at p< 0.006 for Hadcm3, April and December at p< 0.023,  

0.039 under A2 and B2 scenarios respectively whereas Uyo also 

recorded uncertainty in the month of October at p<0.002 for 

Hadcm3 and March at p <0.017 and May at p<0.021 for A2 and B2 

scenarios. On the other hand,   May, June and September were 

noted as months of uncertainties for Asaba at p<0.031, p<0.001 for 

Hadcm3 and p<0.001 for September under B2 scenario. The results 

were all significant at p > 0.05 for all the months at the different 

stations which implies that the predictions were accurate for the 

different stations except for the months were uncertainties were 

observed implying that the result for those months should be used 

with caution as it may not capture the existing realities on ground 

or local climate characteristics of the area. 

Conclusion and Recommendations 

Regardless of the fact that the predictor‟s relationship with 

the predictand vary from station to station in the region as revealed 

by their respective correlation coefficients, shum, rhum, r850 and 

r500 showed significant relationship with the predictand, hence the 

super predictors in the area. It is concluded that rainfall in the 

region depends on these global climate variables because they 

significantly predict rainfall in the area particularly at p<0.05. 

Therefore, strict adherence to adequate validation and calibration 

procedures of the model, unbiased selection of predictor variables 

and development of local GCM that will capture all drivers of local 

climate are strongly recommended. 
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