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Introduction

such events in the past and for estimating climate that will occur in
the future. Thus, Global Climate Models (GCMs) are essential to
study global patterns of temperature, precipitation, and upper-
ocean heat content in response to changes in the concentration of
greenhouse gases and variations in the composition of the
atmosphere, Intergovernmental Panel on Climate Change (IPCC),
(2021). General Circulation Models (GCMs) are the main state-of-
the- science source for information about future climate change.
However, the outputs from GCMs tend to be spatially coarse and
biased for application at local scales (Benestad, 2010; Di Luca et
al., 2012; Li et al., 2010; Mehrotra & Sharma 2010; Piani et al.,
2010; Shiru et al, 2019). Although, there is essential
advancements in GCMs application with satisfactory results, it
exhibits uncertainties when it comes to simulating climate
variables, particularly with respect to annual and seasonal
variations (IPCC, 2013; Kundzewicz et al., 2018). Due to their
coarse spatial resolutions, GCMs are inadequate to simulate
regional-scale temperature, precipitation, cloud and aerosol
processes, and climate of mountainous and coastal regions (IPCC,

Rain is liquid water in form of droplets that have condensed
from atmospheric water vapour, it then becomes heavy enough to
fall under gravity. Rain is not only the most popular form of
precipitation, but also the most variable component of the climate
system and has a vital role in equal balancing of surface and sub-
surface water resources through the hydrologic cycle process in
nature. Rainfall is a vital weather element which can give
information on the state of an environment (Afangideh et al.,
2010). In a related development, rainfall is an important weather
and climate parameter that affects socio-economic livelihood of
people within the global community. It is one of the most
important climatic variables because of its two-sided effects - as a
deficient resource, such as droughts and as a catastrophic agent,
such as floods. It is believed that the climate system will continue
to change under the prevailing human activity and that humanity
will be faced with more of these extreme events (Yang et al.,
2011). This situation therefore prompts the increasing concern and
studies on changes in frequency, intensity, and/or magnitude of
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2013; Flato et al., 2013). Additionally, GCMs also have limitations
when it comes to reproducing cloud cover and are characterized by
overestimation of heavy precipitation events, wet days, and
underestimation of dry days frequencies (IPCC, 2013;
Woldemeskel et al., 2015). As a result, it is recommended to
downscale GCM simulations to regional, basin, and watershed
scales in order to obtain good quality climate information from
GCMs for use in climate change and impact studies. Downscaling
techniques are used to improve the spatial resolution and correct
systematic biases in climate projection data (Ali et al. 2019;
Gudmundsson et al., 2012). This method is considered to be more
useful than General Circulation Models for assessing impacts of
climate change scenarios at a higher resolution, by forging a
mathematical relationship between large scale predictors and
predictand(s). However, despite the high relevance and
sophistication of this new method in climatological studies, rainfall
is a random hydrologic event whose occurrence cannot be
predicted with certainty especially in the developing world making
uncertainties an important aspect of consideration in climate
change studies as effort are made to achieve more reliable results
through climate modeling (Semenov & Stratonovitch 2010). It is
on this note that this study aims at dismantling uncertainties
associated with rainfall projection particularly when the
downscaling procedures is involved over the study area.

Materials and Methods

Description of the Study Area

TO0E
1

This study was carried in the South-South region located in
the Niger Delta region of Nigeria and lying between latitudes
3°25'30"N — 8°28'30"N and longitudes 5°10'0"E — 9°22'30"E. It is
one of the six geopolitical zones in Nigeria, signifying both the
geographic and political districts of east coast of Nigeria. The
ecosystem of the area is highly diverse and supportive of numerous
species of terrestrial and aquatic flora and fauna and human life.
According to Food and Agriculture Organization, (2001), the
region is divided into four ecological zones namely freshwater
zone, coastal inland zone, lowland rain forest zone and mangrove
swamp zone. Lambin, (2002), pointed out that the South-South has
the largest mangrove swamps in Africa, with its stagnant swamp
covering about 8600 squares, and about 2,370 square kilometers of
the area consist of estuaries, creeks and rivers. It covers over
70,000km? and constitutes about 7.5% of Nigeria's land mass. With
a total annual rainfall varying from 2400mm to 4000mm within
West Africa. The monsoon wet (rainy) season over the area begins
in May, as result of the seasonal northward movement of the
Intertropical Convergence Zone (ITCZ), with termination in
October (Myers et al., 2010). The region is dominated by mining
activity (petroleum) and has about 70% of its population living in
rural areas. Rain-fed agriculture is the major means of sustenance
of the people. The region is swayed by the localized convection of
the West African monsoon with less contribution from the
mesoscale and synoptic system of the Sahel (Thomas & Baltzer,
2002). Although, the study area is situated in the southern part of
Nigeria comprising six states; Akwa Ibom, Delta, and Rivers were
the sampled states as shown in Figure 1.
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Downscaling Procedure system. As a result, GCM based projections may not be robust
for local impact studies. To overcome this problem
downscaling techniques have been developed which take the
large-scale predictions provided by a GCM and apply methods
to extract implied climate change information at more
regional/local scales. Furthermore, downscaling is used to
converting the coarse spatial resolution of the GCMs output
into a fine resolution which can involve generating point/station
data of a specific area by using the GCM climatic output
variables (Wilby & Wigley 1997; Dawson & Wilson 2007;
Fowler et al., 2007). According to Mekonnen & Schumitter,
downscaling requires at least 30 years of observed data for the
base term is essentially carried out according to the following
procedural steps; Quality control and data transformation,
screening of predictor variables, model calibration, weather
generation, statistical analyses, graphing model output and
scenario generation as shown in Figure 2.

The main tool for providing insights into possible future
climate change is climate modelling. Climate models are
mathematical models that stimulate the behaviour of Earth
climate system (atmosphere, hydrosphere, lithosphere,
cryosphere and biosphere) based on the fundamental laws of
physics. Climate models are important tools for improving our
understanding and predictability of climate behaviour on
seasonal, annual, decadal and centennial time scales. Of all the
known climate models, the General Circulation Models
(GCMs) are the most important and are the main tools used for
projection of global climate into the future and as well as
important tools to assess potential impacts of global climate
warming (Gagnon, Singh, Rousselle & Roy, 2005). General
Circulation Models are computer models that mathematically
represent various physical processes of the global climate
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Figure 2: Flow chart showing steps involved in downscaling and scenario generation (modified from Wilby & Dawson, 2007).
gather an appropriate set of predictors (Huang et al., 2011). The SP

Selection of Large-Scale Predictors used in the Study method was established by Mahmood & Babel (2012) and uses the

Predictor selection is an important aspect of downscaling. It results from the SDSM function to consider the correlation
usually involves identifying relationships between climate coefficient, partial correlation coefficient, and p-value and it has
variables and daily rainfall from each meteorological station to been adopted in several studies for variable selection (Singh et al.,
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2015; Pathan & Waikar 2020; Ahsan et al., 2021). According to
(Khadka & Pathak 2016), multicollinearity between more than two
independent variables can be reduced by selecting variables using
this method. The Correlation coefficients (R) were calculated
between the 26 NCEP variables and rainfall and empirical
relationships between selected large-scale indices of the NCEP
dataset and local variables were generated using multiple linear
regression and their regression parameters produced during the
process of calibration. Finally, future climates were then predicted
using the scenario generator operator in the SDSM. In this study,
the SDSM maodel was set up following the instructions of Wilby &

Dawson (2007) presented in Figure 2; this application was also
employed in the works of Mekonnen & Disse (2018), Molina &
Bernhofer (2019), and Hassan & Hashim (2020). The investigation
revealed (shum, rhum) as super predictors showing significant
correlation with the measured rainfall for all stations, whereas
(shum, rhum, r850 and r500) demonstrated correlations with three
stations. In a related development, P5 u showed a strong
relationship with rainfall data obtained from two stations while P_u
and P5th were observed to show significant relationship with the
predictand at one station as displayed in Table 1.

Table 1: Selected Large-Scale predictors in the study area

Stations Predictors Coefficients
Asaba Shum 0.70
Rhum 0.71
r850 0.78
r500 0.70
P5th 0.74
Warri shum 0.66
r850 0.74
P5 u 0.73
P u 0.59
Uyo Shum 0.67
Rhum 0.66
r850 0.72
r500 0.64
P5 u 0.71
Port Harcourt Shum 0.69
Rhum 0.70
r850 0.77
r500 0.68

Calibration and Validation of the Statistical Downscaling
Model

After successfully screening the variables using the
methods itemized and presented in Figure 2, the process of
calibration was continued using the selected variables of NCEP
and daily rainfall observations within the period 1985-2000 and
regression parameters were generated. The parameters together
with the NCEP variables and the other part of the measured daily
rainfall covering 2001-2015 were then employed in the weather
generator function for the validation step. The scenario generator
operation was then applied using the selected predictors supplied
by HadCM3 for either historical or future climate to generate daily
simulated rainfall. The Root Mean Square Error (RMSE), the
coefficient of determination (R?), and Ratio of Standard Deviation
(RSD) was calculated and used to test the model’s performance in
consonance with other studies which studies such as (Hassan &
Harun (2012), Dibike & Coulibaly, (2005), Yadav et.al., (2010),
Wilby & Dawson, (2013), Goyal et al. (2012), Hassan et al.
(2014). It is important to mention that the model was segmented
into four seasons December, January, February (DJF); March,
April, May (MAM); June, July, August (JJA) and September,

October, November and its performance between the observed and
simulated predictand based on NCEP predictors for both
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calibration and validation periods was measured on a seasonal time
scale.

The calibrated data were then used to generate

Y, (Obs;—Obs).(Pred;—Pred)

R =
\/Z{Ll(obsi—m)Z.Z{‘:l(Predi—Pred)z

RSME = Zma(obsi—Xmoqer)” 3

n

Where: Obs = observed data value

Pred = predicted data value
Obs = mean observed data value

Pred = predicted mean data.

The summary of the results of the validation indices of the sub-
model for seasonal rainfall predictions presented in Table 2 shows
the values of R and RMSE and it ranges between 0.63-0.96 and
0.11- 0.42 respectively at p> 0.05 which indicate that there is a
significant relationship between the simulated and observed data
for the period of validation (2001-2015) at the sub- seasonal
timescale.
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Table 2: Validation of SDSM for Seasonal Rainfall Projection

Station Scale of Rainfall R r’ RMSE RSD P value at
SDSM seasons 0.05
Asaba Seasonal DJF 0.91 0.83 0.20 0.72 0.00
MAM 0.72 0.52 0.37 0.89 0.00
JA 0.83 0.69 0.21 1.20 0.00
SON 0.74 0.55 0.31 0.22 0.00
Portharcourt Seasonal DJF 0.64 0.41 0.42 0.88 0.00
MAM 0.75 0.56 0.41 1.00 0.00
JA 0.86 0.74 0.23 1.02 0.00
SON 0.91 0.83 0.11 1.11 0.00
Uyo Seasonal DJF 0.72 0.52 0.41 0.12 0.00
MAM 0.69 0.48 0.43 0.23 0.00
JA 0.68 0.46 0.42 1.03 0.00
SON 0.91 0.83 0.25 0.11 0.00
Warri Seasonal DJF 0.75 0.56 0.32 1.79 0.00
MAM 0.69 0.48 0.37 0.23 0.00
JA 0.91 0.83 0.21 0.73 0.00
SON 0.87 0.76 0.36 0.76 0.00

R- stand for correlation coefficient between simulated and observed data; r>- coefficient of determination; RMSE- root mean square
error, RSD- ratio of standard deviation 0.05 P value — alpha for significance between simulated and observed data set.

The high values of R and low values of RMSE sufficiently
explains the model’s predictive ability. However, the model is
concluded to provide a better performance in Asaba in DJF, Warri
(MAM) in JJA while Port Harcourt and Uyo perform better in
SON. The results on the basis of the R and RMSE values shows the
performance of SDSM for accurately developing long-term mean
rainfalls and has the capacity to predict rainfall in the region on a
seasonal timescale and agrees with the recommendation of
Mekonnen & Disse (2018) to be selected as the best model for
achieving rainfall downscaling.

Observed and Modelled Seasonal Rainfall for the area.

The record of the observed and modeled rainfall data for
the seasons DJF, MAM, JJA and SON is presented in Table 3 and
it is clear that the validation record shown in Table 2 is valid
indicating that the model sufficiently captures the local data
characteristics for rainfall in the areas and that the observed and
simulated data within the period of validation sufficiently matches.

From Table 3, it is clear that the observed and simulated data
within the period of validation sufficiently matches with the
following results: Warri observed data in SON is 292.2mm while
the simulated is 290.5mm. in the same vein, it is noted that in JJA,
modelled data for Asaba records only 1.9 mm higher than the
observed whereas the simulated in Uyo stands at 6.7mm higher
than the observed in SON and the observed is merely 0.6mm
higher than the modelled in Port Harcourt in the same season. On
the other hand, MAM shows that observed data for Asaba is
2.4mm higher than simulated whereas for the same sub-seasonal
timescale Port Harcourt records for observed is 0.9mm above the
modelled. In JJA, Warri observed data is 4.2mm higher than the
simulated and the observed is lower than the modelled data by
1.4mm in Port Harcourt within the same season. The records for all
the stations within the season timescale investigated reveals no
significant difference between the observed and simulated data
suggesting that the data sufficiently matches affirming the
validation earlier done.

Table 3: Summary of Observed and Modelled Seasonal Rainfall Data for the area

Station Source Warri Asaba Uyo Port Harcourt
DJF Observed 37.1 34 25.6 333
Modeled 36.7 335 24.9 33
MAM Observed 205.9 190.3 204.9 178.6
Modeled 204.6 187.9 204.2 177.7
JIA Observed 403.7 349.2 356.6 320.6
Modeled 399.5 3495 358.5 3225
SON Observed 292.2 261.1 253.4 234.8
Modeled 290.5 263.2 260.1 234.2

Method of Data Collection and Analysis

The data for this study were acquire from two major
secondary sources and for this reason the expost-facto research
design was adopted in this study. The data used includes 30 years
rainfall data from 1985 - 2015 acquired from the records of the
Nigerian Meteorological Agency as well as large scale predictors
and this was assessed from the archive of working groups such as
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Hadley Centre for Global Climate model version 3 (HadCM3) and
National Centre for Environmental Prediction (NCEP) reanalysis
project. Rainfall data used for this study was for one climatic
normal (1985-2015) and this is so because apart from being the
maximum data field limit for operationalizing the SDSM as
proposed by the builder of the model, 30 years period has also been
recommended as the minimum requirement for climate studies
(IPCC, 2007). The quadrat sampling technique was used in this
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study by stratifying the area stratified into 2° x 2° latitude and
longitude intersections and on the basis of the stratification (Asaba,
Warri, Uyo and Port Harcourt) local meteorological stations that
fall within the grids calibrated were selected for the study. The
Wilconsin signed rank test which is suitable for comparing two
related samples or paired observations was employed in this study
for purposes of addressing the issues of uncertainty which is a
fundamental challenge associated with climate prediction.

Results and Discussions

Uncertainty Analysis

GCM outputs based on the Special Report on Emission
Scenarios (SRES) have been used extensively to project future
meteorological variables for use as inputs into hydrological models
at a regional scale (Kour et al., 2016). Large-scale averages with
little spatial reliability from GCMs characterize the direct
representations of hydrological quantities for specific regions. In
assessing climate change, there are also many sources of
uncertainty which is categorized into two broad groups such as
uncertainties related to dynamic structure of GCMs and that related
to amount of greenhouse gas emissions (Covey et al., 2003).
Therefore, in order to achieve more reliable results uncertainties
are considered very important in climate change studies (Semenov
& Stratonovitch, 2010). Uncertainty issues in downscaling models
have received much attention in recent times in view of its great
effects on climate prediction and further on decision making.

Following the fact that the confidence on the reliability of
the climate change anomalies computed from the scenarios is
dependent on the downscaled outputs’ ability to represent the
baseline climate (Dibike et al., 2008). The uncertainty analysis was
performed to establish confidence in the downscaled data from
GCM scenario outputs. Therefore, the evaluation of the
performance of the downscaling method in reproducing the mean
and variability of the observed rainfall by comparing downscaled
rainfall provided with climate predictors with station-observed
rainfall from 1986-2015 was done and the relative uncertainties in
downscaled HadCM3 rainfall was assessed on the basis of its
ability to simulate seasonal cycles in comparison to the mean
seasonal cycle of the observed rainfall. The test results (p-values)
of the Wilcoxon Signed Rank sum test for the difference of the
means of observed and simulated rainfall data together with the
observed HadCM3 rainfall data at the 95% confidence level at a
monthly scale are shown on the respective tables for all the stations
in the study area.

In Table 3, the uncertainty information of the projections
made by the model based on the observation period at Warri
station is displayed. In the Table the observed and simulated data is
paired and the hypothesis which states that, ‘there is no significant
difference between the simulated data and observed data is tested
to verify if there are uncertainties.

Table 3: Rainfall Uncertainty Analysis for Warri

Months HadCM3 A2 Scenario B2 Scenario
January 0.241 0.221 0.317
February 0.311 0.031 0.067
March 0.112 0.334 0.050
April 0.112 0.412 0.070
May 0.103 0.115 0.121
June 0.312 0.224 0.223
July 0.110 0.113 0.112
August 0.023 0.061 0.219
September 0.221 0.551 0.112
October 0.115 0.110 0.105
November 0.210 0.212 0.089
December 0.121 0.114 0.541

On the other hand, if any significant difference exists
between the simulated and observed data, it implies that there are
some uncertainties that may be peculiar to that particular station.
Consequently, uncertainty only exist in the month of August at
p<0.05 (0.023) and for A2 scenario uncertainty exist in the month
of February at p<0.05(0.031) while for B2 scenario there are no
uncertainties. This suggests that the said prediction is valid for
Warri at 95% confidence level for all other months except the
month of August. This also indicates that the use of the A2
scenario for projected period for August should be used with
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caution as it may not capture the exact situation. Again, the month
of February under the A2 scenario reveals that the projection for
that month may not represent the reality because of the existing
uncertainties.

The uncertainty result of the projections made by the model
for Port Harcourt is presented in Table 4 and the analysis reveals
that uncertainties exists in the months of October at p<0.05 (0.006)
and April under the A2 scenario at p<0.05 (0.023) and in the month
of December under the B2 scenario at p<0.05 (0.039).
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Table 4: Rainfall Uncertainty Analysis for Port-Harcourt

Months HadCM3 A2 Scenario B2 Scenario
January 1.121 0.102 0.231
February 0.362 0.231 1.231
March 2.210 1.207 0.991
April 0.171 0.023 1.231
May 0.341 0.241 0.451
June 0.211 0.112 0.921
July 0.231 0.521 0.234
August 0.351 2411 0.251
September 0.122 0.123 0.052
October 0.006 0.501 0.921
November 0.231 2.871 0.712
December 1.102 0.769 0.039

The p-values are above 0.05 for all months except for these
months, October, April and December under scenarios A2 and B2
respectively. This finding reveals that the null hypothesis was not
rejected; suggesting that observed and SDSM simulated estimates
were statistically significant for every month except October, April
and December. For these months, the null hypothesis was rejected
because the p-values were below the critical value of 0.05. This
implies that the prediction is true for Port Harcourt station and at
95% confidence level for all other months except for October,
April and December. This also reveals that the accuracy of the
model’s prediction for the months of October, April and December
under scenarios A2 and B2 respectively is not guaranteed as it may

not capture the true situation. Hence projections result for those
months within the projected period need to be used with absolute
caution.

The uncertainty results of the projections for Uyo as
revealed by the model is clearly displayed in Table 5 and the
simulated data and observed data is tested to verify if there are
uncertainties. It is obvious as reported in the Table that there are
some uncertainties and that is captured in the months of October at
p<0.05 (0.002) and also in the month of March under the A2
scenario at p<0.05 (0.017) while under the B2 scenario
uncertainties exist in the month of May at p<0.05 (0.021).

Table 5: Rainfall Uncertainty Analysis for Uyo

Months HadCM3 A2 Scenario B2 Scenario
January 0.111 0.707 0.231
February 0.842 0.831 1231
March 2.711 0.017 0.991
April 0.971 0.823 1.231
May 0.341 0.241 0.021
June 0.211 0.512 0.921
July 0.231 0.721 0.234
August 0.379 1.411 0.059
September 1.822 0.123 0.062
October 0.002 1.541 0.121
November 3.231 1.671 0.412
December 0.912 1.023 0.159

The p-values are above 0.05 for all months except for the
months October, March and May. This finding reveals that the null
hypothesis was not rejected; suggesting that observed and SDSM
simulated estimates were statistically similar for every month
except October, March and May. For these months, the null
hypothesis was rejected because the p-values were below the
critical value of 0.05. This implies that the prediction is accurate
for Uyo station and at 95% confidence level for all other months
except for October, March and May. This also reveals that the
accuracy of the model’s prediction for the month of October,
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March and May did not capture the true situation in Uyo in those
stations. Hence the projection results for these months within the
projected period need to be used with absolute caution under the
corresponding emission scenarios as shown in table 5 above.

Table 6 shows the uncertainty results of the projections
made by the model at Asaba evidently, uncertainties are observed
in the months of May and June at p<0.05 (0.031 and 0.001)
respectively whereas uncertainties are observed in the month of
September under the B2 scenario at p<0.05 (0.001) and none under
the A2 scenario.

Vol-2, Iss-9 (September-2025)



IRASS Journal of Multidisciplinary Studies Vol-2, Iss-9 (September-2025): 34-43

Table 6: Rainfall Uncertainty Analysis for Asaba

Months HadCM3 A2 Scenario B2 Scenario
January 0.331 0.117 0.364
February 0.312 0.153 0.117
March 0.611 0.317 0.891
April 0.151 0.723 0.431
May 0.031 0.241 0.951
June 0.001 0.212 0.621
July 2.286 0.321 0.634
August 1.451 0.221 0.891
September 0.322 0.203 0.001
October 0.892 2.371 1.751
November 0.233 0.671 0.318
December 0.214 0.191 0.129

The p-values are above 0.05 for every other month except
for May, June and September. This finding reveals that the null
hypothesis was not rejected; suggesting that observed and SDSM
simulated estimates were statistically similar for every month
except May and June. For these months within the projected
period, the null hypothesis was rejected because the p-value was
below the critical value of 0.05. This implies that the prediction is
accurate for Asaba station and at 95% confidence level for all other
months except for May and June. This also reveals that the
accuracy of the model’s prediction for the month of September
under the B2 scenario may not capture the true situation in Asaba.
It is also implied that using the B2 scenario to predict for May and
June at Asaba station may not produce accurate result hence the
results for these months within the projected period need to be used
with extreme caution. Accuracy in downscaling, using multiple
linear regression techniques as in SDSM, is based largely on the
assumption of predictor-predictand relationships (Wilby &
Dawson, 2007). However, the physical processes of the
atmosphere make the prediction of weather variables by GCMs
very uncertain owing to complexity. Downscaled scenarios in this
study were generated using the HadCM3 model. Therefore, to
establish confidence in the projected rainfall data downscaled from
GCM scenario outputs and depend on the projection results to give
explanation to changes in climate variables, it was important that
the downscaled outputs reasonably represent the current state of
the rainfall conditions in the area. In fact, the confidence on the
reliability of the climate change anomalies computed from the
scenarios run depend on the downscaled outputs’ ability to
represent the baseline climate (Dibike et al., 2008). In order to
have a dependable projection outputs that can be used for planning
and other decision on climate change considerations, the
uncertainty test was performed using the Wilcoxon Signed Rank
test (Wilcoxon, 1945) which is one of the best nonparametric
methods for conducting hypothesis tests (Conover, 1980) and
widely used in uncertainty analysis of downscaled climate
parameters provided with predictor scenarios of the GCMs (Dibike
et al., 2008; Khan et al., 2006 a,b).The model provided that the
output was dependable based on the quality of results revealed.
However, uncertainties were revealed in some months at some
stations for the period under review and under the two scenarios
using the HadCM3 were p< 0.05 which implies that the result for
those months should be used with caution as they might not
capture the exact situation in the area. Therefore, in Warri
uncertainty is revealed in February under the A2 at p< 0.031.
Similarly, Port Harcourt shows uncertainties in the month of
October at p< 0.006 for Hadcm3, April and December at p< 0.023,
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0.039 under A2 and B2 scenarios respectively whereas Uyo also
recorded uncertainty in the month of October at p<0.002 for
Hadcm3 and March at p <0.017 and May at p<0.021 for A2 and B2
scenarios. On the other hand, May, June and September were
noted as months of uncertainties for Asaba at p<0.031, p<0.001 for
Hadcm3 and p<0.001 for September under B2 scenario. The results
were all significant at p > 0.05 for all the months at the different
stations which implies that the predictions were accurate for the
different stations except for the months were uncertainties were
observed implying that the result for those months should be used
with caution as it may not capture the existing realities on ground
or local climate characteristics of the area.

Conclusion and Recommendations

Regardless of the fact that the predictor’s relationship with
the predictand vary from station to station in the region as revealed
by their respective correlation coefficients, shum, rhum, r850 and
r500 showed significant relationship with the predictand, hence the
super predictors in the area. It is concluded that rainfall in the
region depends on these global climate variables because they
significantly predict rainfall in the area particularly at p<0.05.
Therefore, strict adherence to adequate validation and calibration
procedures of the model, unbiased selection of predictor variables
and development of local GCM that will capture all drivers of local
climate are strongly recommended.
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