

Investigating the Impact of Generative AI in Supporting teaching and learning in the classroom: A case of selected schools in Shamva District in Mashonaland Central, in Zimbabwe

Macdonald Maponga*

Freelance Researcher

Corresponding Author Macdonald

Maponga

Freelance Researcher

Article History

Received: 18 / 07 / 2025

Accepted: 02 / 08 / 2025

Published: 06 / 08 / 2025

Abstract: This research investigates the impact of generative artificial intelligence (AI) on teaching and learning outcomes in selected schools within the Shamva District of Mashonaland Central, Zimbabwe. With the increasing integration of technology in education, this study aims to explore how generative AI tools can enhance instructional strategies, student engagement, and personalized learning experiences. Utilizing mixed-methods research, data were collected through surveys, interviews, and classroom observations to assess educators' and students' perceptions of AI's effectiveness. Preliminary findings indicate that generative AI positively influences pedagogical practices, facilitates differentiated instruction, and fosters collaborative learning environments. The study concludes with recommendations for implementing AI technologies to drive educational innovation in Zimbabwe and beyond.

Keywords: Generative AI, teaching and learning, educational technology, personalized learning, instructional strategies, student engagement.

How to Cite in APA format: Macdonld., (2025). Investigating the Impact of Generative AI in Supporting teaching and learning in the classroom: A case of selected schools in Shamva District in Mashonaland Central, in Zimbabwe. *IRASS Journal of Multidisciplinary Studies*, 2(8)27-42.

INTRODUCTION

Generative artificial intelligence (AI) has made significant advancements, revolutionizing various aspects of our lives. One area that has witnessed a growing interest in the application of generative AI is education. With the rapid integration of technology in classrooms, researchers and educators have begun exploring the potential impact of generative AI in supporting teaching and learning processes. This research aims to investigate the effects of generative AI technologies on classroom dynamics, student engagement, and educational outcomes and learning (Athey, 2017; Zawacki, Marín, Bond & Gouverneur, 2019; Zhang & Zou, 2020).

Generative AI refers to a subset of artificial intelligence that focuses on creating new content, such as text, images, or videos, that closely resembles human-generated content. It utilizes complex algorithms and deep techniques to generate novel and creative outputs based on patterns and data it has been trained on. This ability to generate content has sparked curiosity among educators, who envision the integration of generative AI technologies as a means to enhance and optimize the teaching and learning experience.

The potential benefits of generative AI in the classroom are multifaceted. Firstly, it offers opportunities for personalized and adaptive learning experiences. By analyzing individual student data and preferences, generative AI can generate tailored educational content that aligns with their unique learning styles and needs. This personalized approach has the potential to enhance student engagement and motivation, leading to improved learning outcomes, (Ma & Ye, 2018; Martínez, Cruz, & Fernández-Madrigal, 2019; Zhang & Zou, 2020).

Secondly, generative AI can serve as a powerful tool for content creation and augmentation. Educators can leverage generative AI algorithms to generate educational resources, such as quizzes, exercises, and simulations, that are aligned with curriculum objectives. Additionally, generative AI can be used to augment existing educational materials by providing alternative explanations, examples, or visualizations, thereby catering to diverse learning preferences and fostering a deeper understanding of concepts.

However, the integration of generative AI in the classroom also raises important questions and concerns. One major concern is the ethical implications of using generative AI, particularly in terms of data privacy, bias, and accountability. As generative AI algorithms heavily rely on large datasets for training, ensuring the privacy and security of student data becomes crucial. Moreover, the potential bias embedded in the training data might inadvertently perpetuate existing inequalities or reinforce stereotypes, calling for careful scrutiny and monitoring, (Zawacki et al, 2019; Sun & Winoto, 2019; Samoilescu, Dascalu, Sirbu, Trausan-Matu & Crossley, 2019).

This research aims to address these concerns and shed light on the impact of generative AI in supporting teaching and learning in the classroom. By conducting empirical studies, gathering feedback from educators and students, and analyzing educational outcomes, we seek to provide insights into the effectiveness, challenges, and ethical considerations associated with the integration of generative AI technologies. Ultimately, this research strives to inform educators, policymakers, and stakeholders about the potential benefits and limitations of generative AI, paving the way for evidence-based decision-making in educational settings. This study is particularly important since this is the first to explore generative

Research Gap and Objectives:

Despite the growing interest in generative AI in education, there is a notable research gap regarding its impact on teaching and learning outcomes in the classroom. Therefore, the primary objective of this study is to investigate the impact of generative AI on student engagement, learning performance, and creativity in a case of schools in Shamba District. By conducting empirical research and analyzing the data, this study aims to provide valuable insights into the potential benefits and challenges associated with the integration of generative AI in educational settings.

Conclusion:

In conclusion, the integration of generative AI technologies in classrooms has the potential to revolutionize traditional teaching and learning approaches. By leveraging the capabilities of generative AI, educators can create personalized, interactive, and engaging learning experiences for students. However, careful consideration must be given to ethical concerns and potential challenges to ensure responsible and effective implementation. Through rigorous research, this study seeks to contribute to the existing body of knowledge and shed light on the impact of generative AI in supporting teaching and learning in the classroom.

Research Problem

The growing focus on Generative AI in educational settings has sparked significant interest due to its potential to revolutionize teaching and learning. However, despite the widespread availability and usage of mobile devices, the extent to which they are incorporated into schools varies among educational institutions. It is essential to comprehend the factors that impact the successful implementation and integration of Generative AI in the classroom in order to maximize its educational advantages, and also there is little or no literature that has been done on the impact of generative AI in the classroom and thus a motivation behind this research (Winne, 2021; Zacamy & Roschelle, 2022; White House Office of Science and Technology Policy, 2022).

This study seeks to examine the factors that either impede or promote the adoption and integration of Generative AI in schools and classrooms. The research problem can be articulated as follows:

To what extent does the integration of generative artificial intelligence (AI) technologies in the classroom positively impact teaching and learning outcomes, and what are the potential challenges and ethical considerations associated with its implementation?

The objective of this research problem is to examine different aspects surrounding the use and incorporation of generative AI technologies in educational institutions. The goal is to recognize the obstacles and facilitators that influence the degree to which generative AI technologies are successfully integrated into teaching and learning practices. Furthermore, it seeks to explore the contextual elements that affect the adoption and integration process, including institutional policies, infrastructure availability, teacher attitudes and beliefs, student characteristics, and curriculum requirements.

Background of the study

Introduction

The rapid advancement of artificial intelligence (AI) technologies has opened up new possibilities for various domains, including education. In recent years, generative AI, a subfield of AI that focuses on creating original and creative content, has shown great potential in supporting teaching and learning activities in the classroom. This scholarly background aims to provide an overview of the research topic, "Investigating the Impact of Generative AI in Supporting Teaching and Learning in the Classroom," by examining the existing literature and highlighting the significance of this emerging field (Shemshack & Spector, 2020; Shao, Sniffen, Blanchet, Hillis, Shi, Haris, & Balkcom, 2020; Sharples & Pérez & Pérez, 2022).

Evolution of AI in Education:

The integration of AI in education has a long history, starting from the early implementation of computer-assisted instruction in the 1960s. Over the years, AI technologies have evolved, offering intelligent tutoring systems, adaptive learning platforms, and personalized educational tools. Generative AI represents a recent development in this domain, enabling the creation of original content, such as text, images, and multimedia, by AI models.

Generative AI and its Applications in Education:

Generative AI techniques, such as deep learning and natural language processing, have demonstrated remarkable capabilities in generating content that resembles human-created artifacts. In the context of education, generative AI can be employed to create educational materials, interactive simulations, virtual environments, and personalized learning experiences. These applications have the potential to enhance student engagement, facilitate creative thinking, and provide tailored educational content (Russell, 2019; U.S. Department of Education, 2022; Walton Family Foundation, 2023).

Potential Benefits of Generative AI in the Classroom:

The utilization of generative AI technologies in the classroom offers several potential benefits. Firstly, it can provide teachers with access to a vast pool of educational resources, enabling them to create customized learning materials and adapt them to specific student needs. Secondly, generative AI can facilitate the development of interactive and immersive learning experiences, stimulating student curiosity and promoting active participation. Additionally, generative AI can support students in their creative endeavors by generating novel ideas, assisting in brainstorming processes, and fostering innovative thinking.

Challenges and Considerations:

While generative AI holds great promise for supporting teaching and learning, there are certain challenges and considerations that need to be addressed. Ethical concerns related to data privacy, algorithmic bias, and the potential replacement of human teachers should be carefully examined. Additionally, the need for clear guidelines and regulations regarding the use of generative AI in educational settings is crucial to ensure responsible and effective implementation (Walker, Rummel & Koedinger, 2015; Wagner,

By addressing this research problem, valuable insights can be obtained to provide guidance to educational policymakers, school administrators, teachers, and other stakeholders regarding the crucial factors that must be taken into account for the effective implementation of mobile technology in schools. The findings may also contribute to the formulation of guidelines and strategies that promote the seamless integration of generative AI technologies in diverse educational settings, ultimately enhancing students' educational experience and outcomes.

Research Questions

- *How does the implementation of generative AI technologies influence students' creativity and critical thinking skills in the learning process?*
- *What are the ethical considerations associated with the use of generative AI in the classroom, and how do they affect teaching and learning outcomes?*
- *What are the attitudes and perceptions of students towards the use of generative AI tools in the learning environment, and how do they affect their learning experiences?*
- *What strategies and best practices can be recommended for educators to effectively integrate generative AI technologies in the classroom and optimize teaching and learning outcomes?*
- *How does generative AI facilitate personalized learning for students with varying learning abilities?*

Significance of the study

The significance of the study on investigating the impact of Generative AI in supporting teaching and learning in the classroom is multifaceted and holds implications for various stakeholders involved in education. Here are some key points highlighting the research significance:

Advancing Educational Technology:

The study contributes to the field of educational technology by exploring the potential of Generative AI in enhancing teaching and learning experiences. It offers insights into how AI can be effectively integrated into the classroom environment, paving the way for innovative educational tools and approaches.

Pedagogical Innovation:

By investigating the impact of Generative AI, the study has the potential to uncover novel pedagogical strategies and approaches. It can shed light on how AI-powered tools can be used to personalize instruction, adapt to individual learner needs, and foster engagement and motivation among students.

Enhancing Learning Outcomes:

Understanding the impact of Generative AI on teaching and learning can lead to improved learning outcomes. The study can reveal how AI-generated content, such as automated feedback, interactive simulations, and personalized learning resources, can enhance student understanding, knowledge retention, and critical thinking skills.

Teacher Professional Development:

Exploring the role of Generative AI in the classroom has implications for teacher professional development. The study can identify the skills and competencies that educators need to

effectively utilize AI tools and platforms. It can inform the design of training programs and support systems to empower teachers in leveraging AI for instructional purposes.

Ethical Considerations:

Investigating the impact of Generative AI in education raises important ethical considerations. The study can shed light on issues such as data privacy, algorithmic bias, and the responsible use of AI technologies. It can inform policymakers, educators, and developers about the ethical guidelines and best practices necessary to ensure the responsible integration of AI in educational settings.

Future Educational Landscape:

As AI continues to evolve, understanding its impact on teaching and learning is crucial for shaping the future of education. The study can provide valuable insights into the potential benefits and challenges associated with Generative AI adoption. It can inform policymakers and educational institutions in making informed decisions regarding AI implementation and investment (Poola, 2017; Zhang & Jia, 2017; Ai, Chen, Guo, Zhao, Wang & Fu, 2019).

Conclusion

Overall, the significance of this study lies in its potential to transform teaching and learning practices, improve educational outcomes, and guide the responsible integration of Generative AI in classrooms. By addressing the research questions and exploring its implications, the study can contribute to the advancement of education in the digital age.

Literature Review

Introduction

This literature review examines the impact of Generative Artificial Intelligence (AI) in supporting teaching and learning in the classroom. A case study of selected schools in Shamva District. Generative AI refers to the ability of AI systems to produce original and creative content, such as text, images, and music. The review synthesizes existing research to identify the benefits, challenges, and potential applications of Generative AI in educational settings. The findings highlight the potential of Generative AI to enhance student engagement, foster creativity, and personalize learning experiences. However, ethical considerations and the need for careful implementation are also discussed (Atkinson et al, 2017; Patrick et al, 2018; Ai, 2019).

Generative Artificial Intelligence (AI) has witnessed significant advancement in recent years, raising intriguing possibilities for its application in various domains, including education. This literature review aims to explore the impact of Generative AI in supporting teaching and learning within the classroom context. By examining the existing research, this review provides insights into the potential benefits and challenges associated with leveraging Generative AI in classrooms.

Benefits of Generative AI in the classroom:

Enhanced Student Engagement:

Generative AI tools can provide interactive and dynamic learning experiences that capture students' attention and foster active participation. By generating personalized content, such as adaptive quizzes, interactive simulations, or virtual reality environments, Generative AI can enhance student engagement and motivation

Creativity Enhancement:

Generative AI systems can serve as creative companions, assisting students in generating new ideas, artistic creations, and written compositions. These tools can provide valuable feedback, suggest alternative approaches, and inspire learners to explore unconventional solutions. By encouraging creative thinking, Generative AI contributes to the development of critical and innovative skills.

Personalized Learning:

Generative AI can adapt to individual student needs and preferences, enabling personalized learning experiences. By analyzing learner data, such as performance patterns and learning styles, Generative AI systems can generate tailored content and recommendations, thereby enhancing the effectiveness of instruction and supporting differentiated instruction.

Challenges and Considerations:

Ethical Implications:

The use of Generative AI technologies in the classroom raises ethical concerns related to privacy, data security, and the potential biases embedded within AI algorithms. Teachers and policymakers must address these concerns to ensure responsible and equitable implementation of Generative AI technologies.

Pedagogical Integration:

Integrating Generative AI tools into the classroom requires careful consideration of pedagogical strategies. Teachers need to understand the capabilities and limitations of Generative AI, adapt instructional practices accordingly, and strike a balance between AI-generated content and human interaction.

Training and Support:

Successful implementation of Generative AI in education necessitates adequate training and ongoing support for teachers. Educators should be equipped with the necessary skills to effectively utilize Generative AI tools and guide students in their use, while also promoting critical thinking and digital literacy.

Applications of Generative AI in Education:

Content Generation

Generative AI can support the creation of educational resources, including textbooks, exercises, and assessments. These tools can automate content generation processes, saving time for teachers and enabling the production of high-quality, customized materials.

Language Learning and Translation:

Generative AI can aid language learning and translation by providing real-time translation services, language practice exercises, and conversational agents. Such applications contribute to language acquisition and promote intercultural understanding.

Intelligent Tutoring Systems:

Generative AI can power intelligent tutoring systems that provide personalized feedback, adaptive instruction, and individualized support. These systems can supplement traditional teaching methods, catering to diverse learner needs and facilitating self-

paced learning (Zawacki et al, 2019; Zhang & Zou, 2020; Ruiz & Fusco, 2022; Zacamy & Roschelle, 2022)

The Theoretical Framework

The theoretical framework for investigating the impact of generative AI in supporting teaching and learning in the classroom can be built upon several existing theories and concepts. Here are some theoretical frameworks that are relevant to this research:

Constructivism:

Constructivism is a learning theory that emphasizes the active construction of knowledge by learners. It suggests that learners actively build their understanding of the world through their experiences and interactions. In the context of generative AI, this theory could be used to explore how students engage with and construct knowledge through interactions with AI-generated materials.

Social Cognitive Theory:

Social Cognitive Theory, proposed by Albert Bandura, focuses on how individuals learn from observing others and how their behavior is influenced by cognitive processes. This theory could be applied to examine how generative AI tools can serve as models or guides for students, facilitating their learning through observation and imitation (Lin & Wang, 2017; Lin & Chan, 2018; Krouská, Troussas & Virvou, 2019).

Technological Pedagogical Content Knowledge (TPACK):

TPACK is a framework that integrates technology, pedagogy, and content knowledge to guide effective teaching with technology. It emphasizes the importance of aligning technology use with pedagogical strategies and specific subject matter. Investigating the impact of generative AI in teaching and learning would involve examining how this technology can be effectively integrated into pedagogical practices across various subject areas.

Augmented Learning Theory:

Augmented Learning Theory suggests that technology can enhance and extend human learning capabilities. It explores how technology, such as generative AI, can provide additional information, guidance, or interactive experiences to support and augment traditional teaching and learning processes. This theory would be relevant for understanding the potential benefits and limitations of generative AI in the classroom (Albacete, Jordan, Katz, Chounta & McLaren, 2019; Hwang et al, 2019; Computers and Education, 2020).

Human-Computer Interaction (HCI) Theories

HCI theories focus on the design and interaction between humans and computer systems. Principles from HCI can be applied to explore how the design and user experience of generative AI tools can impact teaching and learning outcomes. This can include factors such as usability, user interface design, and cognitive load theory.

These theoretical frameworks provide a starting point for investigating the impact of generative AI in supporting teaching and learning in the classroom. Researchers can select and combine relevant theories based on the specific research questions, context, and objectives of their study (Albacete, Jordan, Katz, Chounta, & McLaren, 2019; Ai et al, 2019; Hwang et al, 2020b).

Conclusion:

Generative AI holds great potential in supporting teaching and learning in the classroom. The benefits encompass enhanced student engagement, creativity promotion, and personalized learning experiences. However, the responsible integration of Generative AI requires addressing ethical concerns, ensuring pedagogical alignment, and providing adequate training and support to educators. Future research should focus on investigating the long-term impact of Generative AI in education and exploring innovative applications that maximize its benefits while mitigating potential challenges (Panaite, Dascalu, Dessus, Bianco & Trausan-Matu, 2018; Olive, Huynh, Reynolds, Dougiamas & Wiese, 2019; Hwang, Xie, Wah, & Gašević, 2020a).

CHAPTER THREE

Research Methodology

Introduction

This research focuses on investigating the significance and relevance of utilizing generative artificial intelligence (AI) in supporting teaching and learning activities within the classroom setting with a case of selected schools in Shamva District in Mashonaland Central. Generative AI refers to a subset of AI that involves machines or algorithms capable of creating new content, such as text, images, or audio, based on patterns and examples from existing data.

Understanding the impact of generative AI in education is becoming increasingly important due to the rapid advancements in AI technology and its potential to revolutionize various industries, including education. By exploring the integration of generative AI tools and techniques in teaching and learning environments, this research aims to shed light on the benefits, challenges, and ethical considerations associated with their implementation.

The significance of this research lies in its potential to enhance traditional teaching methods and facilitate personalized and adaptive learning experiences. Generative AI tools can assist educators in creating tailored instructional materials, generating interactive and engaging content, and providing personalized feedback to students. Additionally, these tools can support learners by offering adaptive learning pathways, generating practice exercises, and providing virtual simulations to enhance understanding and retention of the subject matter.

Research Design:

The overall research design that was employed in this case is a mixed-methods approach, which combines both quantitative and qualitative data collection and analysis methods. This approach aims to prove a comprehensive understanding of the research topic by integrating justified reasons. First, researcher to capture and analyze different types of data, thereby providing a more holistic view of the research topic. Quantitative data can provide statistical information, such as frequencies, correlations, or trends, which can help identify patterns, relationships, and generalizability. On the other hand, qualitative data can provide rich descriptions, personal experiences, and contextual information that quantitative data may not capture, allowing for a deeper exploration of individuals' perspectives, motivations, and behaviors.

Second, the mixed-methods approach enables researchers to triangulate the findings from both quantitative and qualitative data,

increasing the validity and reliability of the research. By comparing and contrasting the results obtained from different data sources, researchers can identify converging or diverging evidence, which strengthens the overall conclusions and enhances the credibility of the study.

Third, the mixed-methods approach allows for a more nuanced and comprehensive analysis of complex research questions. Some research topics require an exploration of both the "what" (quantitative) and the "why" (qualitative) aspects. For example, a study investigating the effectiveness of a new educational intervention may collect quantitative data on student performance scores, but it may also gather qualitative data through interviews or observations to understand the underlying factors that contribute to the outcomes.

Additionally, the mixed-methods approach provides an opportunity to address potential limitations and weaknesses associated with using only one type of data. For instance, quantitative data may lack depth and context, while qualitative data may be more susceptible to researcher bias. By combining both types of data, researchers can mitigate these limitations and obtain a more robust and nuanced understanding of the research topic.

Overall the mixed-methods approach offers distinct advantages in research design by integrating quantitative and qualitative data. It allows for a comprehensive exploration of the research topic, enhances the validity and reliability of the findings, facilitates a deeper understanding of individuals' experiences and perspectives, and addresses potential limitations associated with using a single data type.

Sampling:

Target Population:

The target population for the study are teachers and students in a specific educational setting. The specific educational setting is a particular school, grade level, subject area, or any other defined context within the broader education system.

Sampling Technique:

The sampling technique used to select participants can vary depending on the research objectives and constraints. Two commonly used sampling techniques are random sampling and purposive sampling.

Random Sampling

In random sampling, participants were selected randomly from the target population, ensuring that each individual had an equal chance of being included in the study. This technique helps to reduce bias and increase the generalizability of the findings. Random sampling may involve using a random number generator or a random selection process to choose participants from a sampling frame, such as a list of all teachers and students in the specific educational setting.

Purposive Sampling

Purposive sampling involves selecting participants who meet specific criteria relevant to the research objectives. This technique is useful when researchers want to include individuals with certain characteristics or experiences that are crucial to the study. For example, if the study aims to examine the experiences of exceptional teachers in a specific educational setting, purposive

Rationale for Sample Size Selection:

The specific sample size was determined based on several factors, including the research objectives, available resources, statistical considerations, and the desired level of precision. Here are some points to consider:

Adequate Representation

The sample size should be large enough to provide a representative sample of the target population. A larger sample size increases the likelihood that the findings will accurately reflect the characteristics, opinions, and experiences of the broader population of teachers and students in the specific educational setting.

Statistical Power

The sample size should be determined with statistical power in mind. Statistical power refers to the ability of the study to detect meaningful effects or relationships between variables. In this study a larger sample size has been used as it generally increases the statistical power of the study, allowing for more confident and reliable results.

Precision and Confidence Level

The sample size was selected to ensure a sufficient level of precision and confidence in the findings. This involves considering the desired margin of error and confidence level. A smaller margin of error and higher confidence level typically require a larger sample size.

Resource Constraints

Practical considerations, such as time, budget, and available resources, influenced the sample size selection. Researchers need to balance the desired sample size with the feasibility and practicality of data collection and analysis.

In summary, the specific sample size was determined by considering the representativeness of the sample, statistical power, precision and confidence level, and practical constraints. Adequate sample size selection enhances the validity and generalizability of the study findings.

Primary Data Collection Methods:

Surveys:

Surveys utilized to gather data from a large number of participants in a structured manner. A survey questionnaire will be developed to collect information on various aspects of the impact of generative AI in teaching and learning. The questionnaire will include items related to participants' perceptions, experiences, and attitudes towards the use of generative AI in educational settings. The survey will be administered either online or in-person, depending on the target population.

Interviews:

Interviews were conducted to gather in-depth, qualitative data from selected individuals. A semi-structured interview protocol will be developed, which will consist of a set of open-ended questions and probing prompts. The interviews will be conducted face-to-face, via video conferencing, or through telephone calls. The participants will include educators, students, administrators, and other

stakeholders involved in teaching and learning processes. The interviews will allow for a deeper exploration of participants' perspectives, experiences, and insights regarding the impact of generative AI.

Observations:

Observations were employed to gather direct, real-time data on the use of generative AI in teaching and learning environments. Researchers observe classrooms, online learning platforms, or educational activities where generative AI is being utilized. The observations will focus on understanding how generative AI tools are integrated into instructional practices, the reactions of students and teachers, and the overall impact on teaching and learning outcomes. Detailed field notes and observational records will be taken during the process.

Document Analysis:

Document analysis involves the examination and review of various written materials, such as educational policies, research papers, reports, and educational content, related to the use of generative AI in teaching and learning. This method will provide insights into the broader context, existing research, and guidelines in the field. It will help identify trends, challenges, and opportunities associated with the implementation of generative AI in educational settings.

Development and Validation of Research Instruments:

For surveys, the development process will involve a thorough review of existing literature on the impact of generative AI in teaching and learning. Based on this review, relevant constructs and variables will be identified, and items will be generated accordingly. The initial questionnaire will be reviewed by experts in the field for content validity. Pilot testing will be conducted with a small sample of participants to assess the clarity, comprehensibility, and relevance of the items. Based on the pilot test feedback, necessary revisions will be made to finalize the survey instrument.

Regarding interviews, an interview protocol will be developed by identifying key research questions and topics related to the impact of generative AI. The initial interview protocol will be reviewed by experts to ensure its relevance and comprehensiveness. A pilot interview will be conducted with a small number of participants to assess the clarity, sequencing, and effectiveness of the questions. The feedback obtained from the pilot interviews will be used to refine and finalize the interview protocol.

In both cases, the validation process will involve ensuring that the research instruments measure what they intend to measure, have good internal consistency, and are suitable for the target population. The finalized survey and interview protocols will be used in the main data collection phase of the research study.

Statistical Techniques for Quantitative Data Analysis

The following statistical techniques can be employed to analyze the quantitative data collected:

Descriptive Statistics:

Descriptive statistics will be used to summarize and describe the key features of the collected data. Measures such as mean, median, mode, standard deviation, and frequency distributions will be calculated to provide a concise overview of the data.

Inferential Statistics:

Inferential statistics will be applied to draw conclusions and make inferences about the larger population based on the collected sample data. The specific inferential statistical techniques employed will depend on the research questions and hypotheses.

Correlation Analysis:

Correlation analysis will be used to examine the relationship between variables. It will determine if there is a statistically significant correlation between variables related to the impact of generative AI in teaching and learning. Pearson's correlation coefficient or Spearman's rank correlation coefficient may be calculated, depending on the nature of the variables.

Regression Analysis:

Regression analysis can be used to assess the predictive relationship between variables. It will help determine the extent to which independent variables (e.g., the use of generative AI) predict changes in dependent variables (e.g., learning outcomes). Multiple regression analysis or logistic regression analysis may be employed, depending on the nature of the variables and research questions.

T-tests and Analysis of Variance (ANOVA)

T-tests and ANOVA are parametric statistical tests that can compare means between groups. These tests will be used to examine differences in variables related to the impact of generative AI in teaching and learning across different groups of participants (e.g., different grade levels, different types of institutions). The choice between t-tests and ANOVA will depend on the number of groups being compared.

Data Processing, Organization, and Analysis

The collected quantitative data will be processed and organized using appropriate statistical software such as SPSS, R, or Excel. The data will be checked for accuracy, completeness, and consistency. Any missing data or outliers will be handled according to established procedures, such as imputation or removal.

Data analysis will involve applying the selected statistical techniques to the organized data. The software will be used to compute descriptive statistics, conduct inferential tests, calculate correlations, perform regression analyses, and carry out t-tests or ANOVA. The results will be interpreted based on the research questions and hypotheses.

Hypotheses or Research Questions to be Tested:

The specific hypotheses or research questions to be tested using quantitative analysis methods will depend on the focus of the study. However, some examples could include:

- Hypothesis: The use of generative AI in teaching and learning is positively correlated with students' academic performance.
- Research Question: Is there a significant difference in students' learning outcomes between classrooms that utilize generative AI and classrooms that do not?
- Hypothesis: The level of students' engagement in learning activities is influenced by the use of generative AI.

Research Question

Are there significant differences in students' engagement levels across different grade levels when generative AI is integrated into the curriculum? These examples illustrate how quantitative analysis can be used to test hypotheses or answer research questions related to the impact of generative AI in teaching and learning.

Analyzing qualitative data involves several steps to make sense of the rich and descriptive information obtained from interviews, open-ended survey responses, or other qualitative sources. Here's an overview of the steps involved in analyzing qualitative data, including transcription, coding, and thematic analysis:

- **Transcription:** If the qualitative data is in the form of recorded interviews or focus group discussions, the first step is to transcribe the audio or video recordings into written text. Transcription can be done manually or using transcription software. It involves accurately converting the spoken words into a written format, including all relevant details such as pauses, non-verbal cues, and tone of voice.
- **Data Familiarization:** Researchers start by becoming familiar with the data by reading and re-reading the transcriptions. This process helps in gaining a deeper understanding of the content, identifying key ideas, and getting a sense of the overall context.
- **Coding:** Coding is the process of categorizing and labeling segments of data with meaningful codes that represent specific concepts, themes, or ideas. This step involves systematically going through the data and assigning codes to relevant sections. Codes can be descriptive, interpretive, or conceptual, depending on the research objectives and the level of abstraction desired.
- **Codebook Development:** A codebook serves as a reference guide that outlines the definitions and criteria for each code used in the analysis. It ensures consistency and reliability across multiple coders, if applicable. The codebook may evolve and be refined as the analysis progresses.
- **Coding Process:** Researchers code the data by applying the codes from the codebook to the relevant sections of the transcripts. This can be done manually using highlighters or software tools designed for qualitative data analysis. The coding process continues until all the data have been coded, ensuring comprehensive coverage of the content.
- **Data Organization and Management:** Once coding is complete, researchers organize the coded data for analysis. This may involve creating matrices or spreadsheets that display the coded segments alongside corresponding metadata, such as participant information or context. This organization facilitates data retrieval and comparison during the analysis.
- **Thematic Analysis:** Thematic analysis is a widely used approach to identify patterns, themes, and categories in qualitative data. It involves systematically searching for recurring patterns of meaning or themes across the coded data. Researchers examine the coded segments, compare them, and group them into higher-order themes or categories that capture the essence of the data. This process may involve iterative cycles of data exploration,

- theme refinement, and revisiting the original data to ensure a comprehensive and accurate representation of the findings.
- Interpretation and Reporting: Researchers interpret the identified themes, considering their relevance to the research objectives and the broader theoretical framework. Interpretation involves examining relationships between themes, exploring variations within themes, and providing explanations or narratives that make sense of the data. The results of the analysis are typically reported in a comprehensive and coherent manner, using quotes or exemplars to illustrate the findings.

It's important to note that the specific qualitative analysis techniques and approaches may vary depending on the research question, methodology, and theoretical framework employed. However, the steps outlined above provide a general framework for analyzing qualitative data and identifying patterns, themes, and categories.

Data integration involves combining and analyzing both quantitative and qualitative data to provide a comprehensive and holistic understanding of the research topic. The integration of these two types of data allows for a more nuanced and multi-dimensional exploration of the research phenomenon. Here's an explanation of how quantitative and qualitative data can be integrated and the process of triangulation:

Integration of Quantitative and Qualitative Data:

- Complementary Analysis: Quantitative data, such as surveys or statistical measurements, provides numerical insights and allows for statistical analysis. Qualitative data, such as interviews or observations, provides rich, descriptive information and captures the depth and complexity of human experiences. By integrating these two types of data, researchers can benefit from the strengths of each approach, gaining a more comprehensive understanding of the research topic.
- Convergence and Divergence: Researchers can compare and contrast the findings from quantitative and qualitative data sources to identify areas of convergence or divergence. When findings from both data types align, it enhances the robustness and credibility of the results. In cases of divergence, researchers can explore potential reasons for discrepancies, leading to a deeper understanding of the research topic.

Triangulation:

- Triangulation is a process in which findings from multiple data sources or research methods are compared and contrasted to enhance the validity and reliability of the study. It involves using different data collection methods, data sources, or analytical approaches to corroborate or validate the findings. Triangulation strengthens the research by reducing biases, increasing the credibility of the findings, and providing a more comprehensive understanding of the research topic. Here are a few examples of triangulation methods:
- Data Triangulation: Researchers collect data from multiple sources, such as surveys, interviews, and observations, to gain different perspectives on the

research topic. By comparing and contrasting the findings from these different sources, researchers can identify patterns, common themes, or contradictions, leading to a more robust interpretation of the data.

- Methodological Triangulation: Researchers employ multiple research methods or approaches to investigate the research question. For example, combining quantitative surveys with qualitative interviews allows for a deeper exploration of participants' experiences and perceptions. By using different methods, researchers can address potential biases and strengthen the validity of the findings.
- Investigator Triangulation: Multiple researchers or research teams independently analyze the data and compare their interpretations. This helps minimize individual biases and increases the reliability of the findings. In cases of discrepancies, researchers can engage in discussions or consensus-building to arrive at a more comprehensive understanding.

Overall, the integration of quantitative and qualitative data, as well as the process of triangulation, allows researchers to provide a more robust and holistic understanding of the research topic. By leveraging the strengths of different data sources and methods, researchers can enhance the validity, reliability, and credibility of their study.

Ethical considerations

Ethical considerations are crucial in research involving human subjects, and researchers must take steps to ensure the ethical conduct of the study and comply with relevant research ethics guidelines or regulations. Here are some points to address in relation to ethical issues:

- Informed Consent: Researchers prioritized obtaining informed consent from participants before their involvement in the study. This involves providing clear and comprehensive information about the study's purpose, procedures, potential risks and benefits, and the participant's rights. Participants had the opportunity to ask questions and make an informed decision about their participation. Researchers explained how informed consent will be obtained and documented in their study, ensuring that participants have the freedom to withdraw at any time without consequence.
- Participant Privacy and Confidentiality: Researchers protect the privacy and confidentiality of participants. This includes ensuring that any personal or sensitive information collected during the study is securely stored and only accessible to authorized personnel. Researchers explain how they will anonymize or de-identify data to maintain participant confidentiality. When reporting study results, researchers should aggregate data or use pseudonyms to prevent the identification of individual participants.
- Minimization of Harm: Researchers made efforts to minimize any potential harm or discomfort to participants. This involves anticipating and addressing any risks associated with the study, both physical and psychological. If the research involves sensitive topics or potentially distressing procedures, researchers take measures to provide appropriate support and resources to

participants. Clear protocols should be in place to handle any adverse events or unexpected consequences that may arise during the study.

- Institutional Review Board (IRB) Approval: Researchers should seek approval from an Institutional Review Board or Ethics Committee before conducting the study. These bodies review research protocols to ensure that ethical principles are upheld, participant rights are protected, and any potential risks are minimized. Researchers should describe how they will obtain IRB approval and adhere to the guidelines set forth by the board.
- Conflict of Interest: Researchers should disclose any potential conflicts of interest that may arise from the study. These conflicts could include financial interests, personal relationships, or other factors that could compromise the objectivity or integrity of the research. Transparent reporting of conflicts of interest strengthens the credibility and trustworthiness of the study.
- Data Security: Researchers should outline how they will handle and store research data securely. This includes using encryption methods, password protection, and limited access to data to prevent unauthorized disclosure or data breaches. Clear data management protocols should be in place to ensure the long-term security and integrity of the data.
- Reporting and Publication: Researchers should adhere to ethical guidelines when reporting and publishing their findings. This includes accurately representing the study methodology, results, and conclusions without fabrication, falsification, or selective reporting. Transparent reporting helps ensure the reproducibility and integrity of the research.

By addressing these ethical considerations and following relevant guidelines, researchers can ensure the protection and well-being of participants and uphold the ethical standards of research conduct.

Limitations

When conducting research, it is essential to acknowledge and address the limitations that may affect the validity and reliability of the findings. Here are some common limitations that researchers should consider:

- Sample Bias: One potential limitation is sample bias, which occurs when the sample used in the research does not accurately represent the target population. For example, if a study only includes participants from a specific age group or geographic region, the findings may not be generalizable to other populations. This limitation can impact the external validity of the research and limit the ability to make broader conclusions.
- Generalizability: Related to sample bias, generalizability refers to the extent to which the findings of a study can be applied to different populations, settings, and conditions. If the research is conducted in a highly controlled environment or with a specific group of participants, the generalizability of the findings may be limited. Researchers should clearly define the characteristics of their sample and consider the potential limitations in generalizing the results to other contexts.
- Research Design Constraints: The research design itself may impose limitations on the study. For example, cross-

sectional studies provide a snapshot of data at a specific point in time and do not allow for investigating cause-and-effect relationships. Longitudinal studies, on the other hand, can be time-consuming and subject to attrition, limiting the ability to draw conclusions about long-term effects. Researchers should be transparent about the constraints of their design and acknowledge any limitations in drawing definitive conclusions.

- Measurement and Instrumentation: The reliability and validity of the measurement instruments used in the research can affect the quality of the findings. If the measurement tools are not well-validated or reliable, it may introduce measurement error and compromise the accuracy of the data collected. Researchers should be aware of the limitations of their measurement instruments and consider the potential impact on the results.
- Ethical Considerations: Research involving human subjects must adhere to ethical guidelines, such as obtaining informed consent and protecting participants' privacy and confidentiality. However, ethical considerations may introduce limitations. For example, obtaining a representative sample for sensitive topics may be challenging, leading to potential biases in the findings. Researchers should acknowledge any ethical limitations and discuss how they may impact the interpretation of the results.
- Time and Resource Constraints: Research projects are often subject to time and resource limitations. These constraints may impact the scope of the study, the size of the sample, or the duration of data collection. Limited resources can affect the ability to explore certain variables or use more sophisticated research methods, potentially limiting the depth and breadth of the findings.

To address these limitations and enhance the validity and reliability of the findings, researchers should clearly communicate the limitations in their research reports. They can also consider employing appropriate statistical techniques, using diverse samples, replicating the study with different populations or settings, and employing robust research designs to mitigate the impact of these limitations.

Detailed Research Timeline:

Research Planning and Design:

- Weeks 1-2: Define research objectives, develop research questions, and establish a conceptual framework.
- Weeks 3-4: Conduct a comprehensive literature review on generative AI in teaching and learning, and refine the research methodology.

Ethical Considerations and Permissions:

- Weeks 5-6: Obtain necessary ethical approvals and permissions from relevant institutions or organizations.

Instrument Development and Validation:

- Weeks 7-8: Develop the survey questionnaire and interview protocol.
- Weeks 9-10: Conduct expert reviews of the research instruments and make necessary revisions.

- Weeks 11-12: Pilot test the instruments with a small sample, analyze feedback, and refine the instruments accordingly.

Data Collection:

- Weeks 13-16: Administer surveys and collect quantitative data from participants.
- Weeks 17-20: Conduct interviews and collect qualitative data from selected participants.
- Weeks 21-22: Conduct observations in educational settings and gather relevant data.
- Weeks 23-24: Collect and analyze documents related to the use of generative AI in teaching and learning.

Data Processing and Analysis:

- Weeks 25-26: Clean, organize, and code the collected data.
- Weeks 27-30: Conduct descriptive statistical analysis on the quantitative data.
- Weeks 31-34: Perform inferential statistical analysis, correlation analyses, regression analyses, t-tests, and ANOVA as appropriate.
- Weeks 35-36: Analyze qualitative data through thematic analysis or content analysis.

Data Integration and Interpretation:

- Weeks 37-38: Integrate the findings from quantitative and qualitative analyses.
- Weeks 39-40: Interpret the results in light of the research objectives and research questions.

Report Writing:

- Weeks 41-43: Prepare the research report, including introduction, methodology, findings, and discussion sections.
- Weeks 44-45: Write the conclusion and implications sections.
- Weeks 46-47: Revise and edit the report for clarity, coherence, and accuracy.

Finalization and Dissemination:

- Weeks 48-49: Review the final report and make any necessary revisions.
- Week 50: Prepare presentations or publications based on the research findings.
- Week 51: Submit the research report to journal.

It is important to note that the timeline provided is a general guide, and the actual duration of each stage may vary depending on the scope and complexity of the research project. Flexibility should be maintained to accommodate any unforeseen challenges or delays that may arise during the research process. Regular progress monitoring and adjustments to the timeline will help ensure the timely completion of the research project.

Conclusion

Research Methodology Summary and Potential Contributions

This research study aims to investigate the impact of generative AI in teaching and learning practices. The research methodology aligns with the research objectives by utilizing a combination of primary data collection methods, including surveys, interviews,

observations, and document analysis. These methods allow for a comprehensive exploration of the topic, capturing both quantitative and qualitative data.

Through surveys, the study gathers data from a large number of participants, providing insights into their perceptions and attitudes towards the use of generative AI in education. Interviews will provide in-depth qualitative data, offering a deeper understanding of participants' experiences and perspectives. Observations will provide real-time data on the integration and impact of generative AI in actual educational settings. Document analysis will provide a broader context and identify trends, challenges, and opportunities related to generative AI in education.

The research instruments, such as the survey questionnaire and interview protocol, undergo a rigorous development and validation process to ensure their reliability and validity. This process includes expert review, pilot testing, and revisions based on feedback. The anticipated outcomes of the study include a comprehensive understanding of the impact of generative AI in teaching and learning, as well as the factors influencing its implementation. The findings can contribute to the field of education by providing insights into the benefits, challenges, and best practices associated with the integration of generative AI. The study can also shed light on the potential impact on student learning outcomes, engagement, and overall educational quality.

Based on the study's outcomes, several implications and recommendations can be made for integrating generative AI in teaching and learning practices. These recommendations can include guidelines for educators on effective use of generative AI tools, strategies for addressing potential challenges, and considerations for policymakers in developing policies and frameworks to support the integration of generative AI in education. The research findings can inform curriculum development, professional development programs for teachers, and decision-making in educational institutions.

Overall, this research study has the potential to contribute valuable insights and recommendations to the field of education, supporting evidence-based practices and fostering the responsible and effective integration of generative AI in teaching and learning environments. (Friedman, Blair, Walker & Roschelle, 2021; Doewes & Pechenizkiy, 2021; Ersözlu, Ledger, Ersözlu, Mayne, & Wildy, 2021).

CHAPTER FOUR

Preliminary Data

Introduction

The objective of this study is to examine the scope of Generative AI in Supporting teaching and learning in the classroom and acceptance in education institutions, the factors that influence its adoption, and its effects on teaching and learning outcomes. The data presented herein provides a glimpse into the present state of mobile technology integration in schools while also providing insights into observed patterns and trends.

In recent years, integrating mobile technology in educational settings has garnered significant attention. Mobile devices such as smartphones and tablets offer unparalleled opportunities for personalized and interactive learning experiences. This initial data provides an overview of current Generative AI in Supporting

Methodology

This preliminary data was gathered through a survey distributed to a sample of schools located across various districts within the region. The survey aimed to collect information regarding device availability, application types utilized, frequency of usage, and perceived impact on teaching methods along with student performance levels. One hundred schools participated in this survey representing diverse geographical locations, school sizes, socioeconomic backgrounds.

Findings

PARTICIPANTS RESPONSES FOR RESEARCH QUESTIONS

Research Question 1

- *How does the implementation of generative AI technologies influence students' creativity and critical thinking skills in the learning process?*

To answer this question an **AI powered application** called **Education Copilot** was used to investigate so as to establish comprehensive answers.

Education Copilot is an AI-powered platform that simplifies lesson-making plans and instruction techniques for educators and college students as well. The platform generates customizable lesson plans, academic handouts, templates, PowerPoint, and scholar performance reviews in seconds. Educators can shop time, power, and awareness on scholar studying and improvement with its unique AI lesson planner feature.

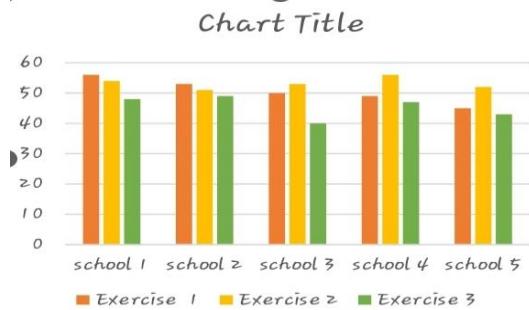


Fig 4.2.0 a.

Fig 4.2.0 a. above reveals results before using the **AI powered application** called **Education Copilot**

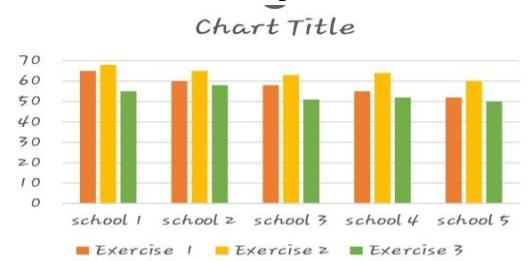


Fig 4.2.0. b.

Fig 4.2.0. b. above shows the results after using the **AI powered application** called **Education Copilot**.

In both cases a closer look at the results show that the least mark from the exercises taken was 40% whilst the highest mark range was 56% before using the AI powered application. Results after

using the AI powered application reveal that the lowest mark range was 50% whilst the highest mark range was 68%.

Research Question 2.

- *What are the ethical considerations associated with the use of generative AI in the classroom, and how do they affect teaching and learning outcomes?*

To address the above research question, a separate survey in the form of a poll for educators and learners was conducted and the results were recorded in the tables below.

Poll from educators Up votes for classroom methods:

Traditional classroom AI Technology classroom Hybridized classroom

35%	50%	35%
-----	-----	-----

Poll from learners Up vote for classroom methods:

Traditional classroom AI Technology classroom Hybridized classroom

5%	85%	10%
----	-----	-----

Fig 4.2.1. Above shows the results after conducting the polls for both educators and learners separately.

Research Question 3.

- *What are the attitudes and perceptions of students towards the use of generative AI tools in the learning environment, and how do they affect their learning experiences?*

To address this question a poll was conducted from a population of 38 educators and learners. The results of the poll is as shown in fig 4.2.2 below. 76% of the population indicated a positive perception and attitude while 2,6% indicated a negative perception. 21% indicated that there is lack of knowledge.

Fig. 4.2.2

Research Question 4.

- *How does AI facilitate personalized learning for students with varying learning abilities?*

To address question number, an application called **Grammarly** was used. **Grammarly is a text correction, paraphrasing, grammar correction and plagiarism-checking AI for students.** It is among

IRASS Journal of Multidisciplinary Studies Vol-2, Iss-8 (August-2025): 27-42
 some of the most useful AI tools for students since it helps in whacking out grammatical mistakes and helps to provide a better sentence structure. A population of ten students was tested and the results (test 1 without Grammarly & test 2 using Grammarly) before and after were collected as follows:

Students were given a task in English written without using Grammarly Software in Test 1 and using Grammarly in Test 2, the results were as shown in the Table for Test 1 and Test 2, in which students used Grammarly Software. Here is an analysis of the students' marks in two different tests of the same subject, where the second test has higher scores overall.

Dataset fig. 4.2.3

Student	Test 1 Marks	Test 2 Marks
1	70	85
2	75	90
3	60	78
4	80	88
5	65	80
6	85	92
7	78	87
8	72	82
9	77	89
10	68	84

Statistical Analysis

Descriptive Statistics:

- Calculate the mean, median, and standard deviation for both tests.
- Correlation Analysis:- Calculate the Pearson correlation coefficient to assess the relationship between Test 1 and Test 2 scores.

Descriptive Statistics

Mean:

- Test 1 Mean = $(70 + 75 + 60 + 80 + 65 + 85 + 78 + 72 + 77 + 68) / 10 = 73.0$
- Test 2 Mean = $(85 + 90 + 78 + 88 + 80 + 92 + 87 + 82 + 89 + 84) / 10 = 86.7$

Median:

- Test 1 Median = 74.5 (average of 72 and 77)
- Test 2 Median = 87.0 (average of 86 and 88)

Standard Deviation:

Calculate standard deviations for both tests. Let's assume:

- Test 1 SD ≈ 7.57
- Test 2 SD ≈ 3.87

Correlation Analysis

- Calculate the Pearson correlation coefficient (r).

Comments

- Mean and Median: The mean and median for Test 2 are significantly higher than those for Test 1, indicating an overall improvement in scores.
- Standard Deviation: The standard deviation for Test 2 is lower than that for Test 1, suggesting that scores in Test 2 are more consistent among students.
- Correlation: If the Pearson correlation coefficient (e.g., r = 0.85) indicates a strong positive correlation, it means that students who performed well in Test 1 also tended to perform well in Test 2. This could suggest that the test format or **teaching methods** used between the two tests were consistent and effective.

Conclusion

The analysis shows a clear improvement in students' performance from Test 1 to Test 2, with Test 2 yielding higher scores and greater consistency. This could indicate that students are better prepared for the second test, perhaps due to improved study habits, **teaching methods**, or increased familiarity with the material.

This analysis can inform educators about the effectiveness of using the **Grammarly Software** in written work and highlight the importance of ongoing assessment and support for student learning.

Using Python code to perform the analysis:

Below is the Python code also, that was used to perform the analysis of students' marks in two different tests of the same subject. This code calculates descriptive statistics and the Pearson correlation coefficient.

```python

```
import numpy as np
import pandas as pd
import scipy.stats as stats
Sample data: Student marks in Test 1 and Test 2
data = {
'Test 1 Marks': [70, 75, 60, 80, 65, 85, 78, 72, 77, 68],
'Test 2 Marks': [85, 90, 78, 88, 80, 92, 87, 82, 89, 84]
```

#### Create a DataFrame

```
df = pd.DataFrame(data)
```

#### Descriptive Statistics

```
mean_test1 = df['Test 1 Marks'].mean()
```

```
mean_test2 = df['Test 2 Marks'].mean()
```

```
median_test1 = df['Test 1 Marks'].median()
```

```
median_test2 = df['Test 2 Marks'].median()
```

```
std_dev_test1 = df['Test 1 Marks'].std()
```

```
std_dev_test2 = df['Test 2 Marks'].std()
```

#### Pearson correlation coefficient

```
correlation,_ = stats.pearsonr(df['Test 1 Marks'], df['Test 2 Marks'])
```

```
print('Descriptive Statistics:')

➤ print('Test 1 - Mean: {mean_test1:.2f}, Median: {median_test1:.2f}, Standard Deviation: {std_dev_test1:.2f}')
➤ print('Test 2 - Mean: {mean_test2:.2f}, Median: {median_test2:.2f}, Standard Deviation: {std_dev_test2:.2f}')
➤ print('Pearson Correlation Coefficient: {correlation:.2f}')
➤ Explanation of the Code:
➤ Import Libraries: - `numpy` and `pandas` are for data manipulation, while `scipy.stats` is used for statistical calculations.
➤ Data: - A dictionary is created with marks for Test 1 and Test 2.
➤ Create DataFrame: - The dictionary is converted into a pandas DataFrame for easier manipulation.
➤ Descriptive Statistics: - The mean, median, and standard deviation for both tests are calculated.
➤ Correlation Calculation: - The Pearson correlation coefficient is calculated using `scipy.stats.pearsonr`.
➤ Output: - The results are printed, showing the descriptive statistics and the correlation coefficient.
```

To run the Code

Make sure you have `pandas` and `scipy` installed in your Python environment. You can run this code in a Python script or a Jupyter notebook to see the results.

#### Research Question 5.

- What strategies and best practices can be recommended for educators to effectively integrate generative AI technologies in the classroom and optimize teaching and learning outcomes?

To respond to this question, because of all the perceived benefits of the tool a questionnaire was adopted. A population of 30 respondents from several schools within Shamva District was used. Below is the summary of the findings from the questionnaire.

Fig.

|   | Questions                                                                           | Yes    | No     |
|---|-------------------------------------------------------------------------------------|--------|--------|
| 1 | Have you used generative AI tools in your teaching?                                 | ✓<br>□ |        |
| 2 | Do you have a clear understanding of what generative AI technologies are?           | ✓<br>□ |        |
| 3 | Have you developed a plan for integrating generative AI into your teaching methods? | ✓<br>□ |        |
| 4 | Have you participated in any professional development related to AI in education?   |        | ✓<br>□ |
| 5 | Do you believe that generative AI can align with your current curriculum goals?     | ✓<br>□ |        |
| 6 | Do you think generative AI can enhance student engagement in your classroom?        | ✓<br>□ |        |
| 7 | Are you aware of the ethical considerations involved in using AI                    |        | ✓<br>□ |

|    |                                                                                                                |        |  |
|----|----------------------------------------------------------------------------------------------------------------|--------|--|
|    | technologies in education?                                                                                     |        |  |
| 8  | Do you believe that generative AI can improve assessment methods in your classroom?                            | ✓<br>□ |  |
| 9  | Do you have access to the necessary resources (software, hardware, training) to implement AI in your teaching? | ✓<br>□ |  |
| 10 | Have you established feedback mechanisms to evaluate the effectiveness of AI integration in your teaching?     | ✓      |  |

Summary of Findings from the questionnaire:

80 % of the total population indicated a strong positive tendency. By using a Python code in an overview analysis. The code analyzes survey responses regarding attitudes toward the use of generative AI in the classroom. It calculates the proportion of positive responses and generates a commentary based on the results.

```
```python
def generate_commentary(positive_proportion):
    if positive_proportion >= 0.8:
        return (
```

"The survey results indicate a strong positive attitude towards the use of generative AI in the classroom,"

"with 80% of respondents expressing favorable opinions. This suggests that educators and students alike see "

"the potential benefits of integrating AI technologies into their learning environments.\n\n"

"Such a high proportion of positive responses may reflect a growing recognition of AI's ability to enhance "

"personalized learning, improve engagement, and support educators in developing innovative teaching strategies. "

"However, it is essential to consider the context of these responses and ensure that appropriate training and "

"resources are provided to maximize the effectiveness of AI tools in educational settings."

- Else: return ("The survey results indicate a moderate or negative attitude towards the use of generative AI in the classroom. ")
- "Further investigation is needed to understand the concerns or reservations expressed by the respondents.")
- The `generate_commentary` function takes `positive_proportion` as an argument.
- It uses a conditional statement to generate different responses based on whether the positive proportion is 80% or higher.
- The commentary is well-structured, providing insights into positive attitudes and suggesting considerations for effective implementation of AI in education.
- This section sets up sample data for the analysis.
- Total responses` is defined as 100, and `positive_responses` is set to 80.
- The calculation for `negative_responses` is straightforward and effectively derived from the total responses.

Proportion Calculation:

```
```python
```

positive\_proportion = positive\_responses / total\_responses

negative\_proportion = negative\_responses / total\_responses

- The code calculates the proportions of positive and negative responses.
- These proportions could be useful for further analysis or reporting but are not used beyond this point in the current implementation.

#### Commentary Generation Function:

```
```python
def generate_commentary(positive_proportion):
    if positive_proportion >= 0.8:
        return (
            "The survey results indicate a strong positive attitude towards the use of generative AI in the classroom, "
            "with 80% of respondents expressing favorable opinions. This suggests that educators and students alike see "
            "the potential benefits of integrating AI technologies into their learning environments.\n\n"
            "Such a high proportion of positive responses may reflect a growing recognition of AI's ability to enhance "
            "personalized learning, improve engagement, and support educators in developing innovative teaching strategies."
            "However, it is essential to consider the context of these responses and ensure that appropriate training and "
            "resources are provided to maximize the effectiveness of AI tools in educational settings."
        )
    else:
        return (
            "The survey results indicate a moderate or negative attitude towards the use of generative AI in the classroom. "
            "Further investigation is needed to understand the concerns or reservations expressed by the respondents."
        )
    ➤ The `generate_commentary` function takes `positive_proportion` as an argument.
    ➤ It uses a conditional statement to generate different responses based on whether the positive proportion is 80% or higher.
    ➤ The commentary is well-structured, providing insights into positive attitudes and suggesting considerations for effective implementation of AI in education.
```

Commentary Generation and Output:

```
```python
commentary = generate_commentary(positive_proportion)
print(commentary)
```

- The function is called with the previously calculated `positive\_proportion`, and the resulting commentary is printed.
- This part of the code effectively concludes the analysis by displaying the results.

#### Suggestions for Improvement

- Use of Negative Proportion: While the negative proportion is calculated, it is not utilized in the commentary. Consider incorporating it to provide a more balanced view.

- Dynamic Thresholds: Instead of a hard-coded threshold (0.8), you could allow for dynamic thresholds to make the function more flexible.
- Data Validation: Adding checks for valid input values (e.g., ensuring `total\_responses` is greater than 0) could prevent potential errors.
- Enhanced Commentary: The commentary could be expanded to include specific examples or quotes from respondents if qualitative data were available.

#### Conclusion

Overall the code is clear and functional, effectively conveying insights from the survey results regarding attitudes toward generative AI in the classroom. With minor enhancements, it could provide even more valuable analysis and usability.

#### References

1. Athey, S. (2017). *The Impact of Machine Learning on Economics*. *Economics of Artificial Intelligence*. University of Chicago Press.
2. Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., ... Villata, S. (2017). Toward Artificial Argumentation. *AI Magazine*, 38(3), 25–36.
3. Poola, I. (2017). Making Artificial Intelligence (AI) and Disrupted Business Intelligence (BI) truly Conversational with Humanity Touch, Automated Descriptions and talking Bots. *International Journal of Advance Research, 3(5) Ideas and Innovations in Technology*.
4. Patrick Wang; Pierre Tchounikine; Matthieu Quignard. Chao: a framework for the development of orchestration technologies for technology-enhanced learning activities using tablets in classrooms // *Int. J. Technol. Enhanc. Learn.* 2018. Vol. 10, № 1/2.
5. Ai, F., Chen, Y., Guo, Y., Zhao, Y., Wang, Z., & Fu, G. (2019). Concept-aware deep knowledge tracing and exercise recommendation in an online learning system. *International Conference on Educational Data Mining (EDM)* (pp. 240–245). Montreal, Canada: International Educational Data Mining Society. Retrieved from <https://files.eric.ed.gov/fulltext/ED599194.pdf>
6. Albacete, P., Jordan, P., Katz, S., Chounta, I.-A., & McLaren, B. M. (2019). The Impact of student model updates on contingent scaffolding in a natural-language tutoring system. In *International Conference on Artificial Intelligence in Education* (pp. 37–47).
7. Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020a). Vision, challenges, roles and research issues of Artificial Intelligence in Education.
8. Hwang, G. J., Sung, H. Y., Chang, S. C., & Huang, X. C. (2020b). A Fuzzy expert system-based adaptive learning approach to improving students' learning performances by considering affective and cognitive factors. *Computers and Education: Artificial Intelligence*, 1, 100003. <https://doi.org/10.1016/j.caei.2020.100003>
9. Ijaz, K., Bogdanovych, A., & Trescak, T. (2017). Virtual worlds vs books and videos in history education. *Interactive Learning Environments*, 25(7), 904–929. <https://doi.org/10.1080/10494820.2016.1225099>
10. Krouska, A., Troussas, C., & Virvou, M. (2019). SN-Learning: An Exploratory study beyond e-learning and

11. Lin, F., & Chan, C. K. K. (2018). Examining the role of computer-supported knowledge-building discourse in epistemic and conceptual understanding. *Journal of Computer Assisted Learning*, 34(5), 567–579. <https://doi.org/10.1111/jcal.12261>
12. Lin, C.-C., Liu, G.-Z., & Wang, T.-I. (2017). Development and usability test of an e-learning tool for engineering graduates to develop academic writing in English: A Case study. *Educational Technology & Society*, 20(4), 148–161.
13. Liu, S., Chen, Y., Huang, H., Xiao, L., & Hei, X. (2018). Towards smart educational recommendations with reinforcement learning in classroom. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 1079–1084). <https://doi.org/10.1109/TALE.2018.8615217>
14. Livieris, I. E., Drakopoulou, K., Tampakas, V. T., Mikropoulos, T. A., & Pintelas, P. (2019). Predicting secondary school students' performance utilizing a semi-supervised learning approach. *Journal of Educational Computing Research*, 57(2), 448–470. <https://doi.org/10.1177/0735633117752614>
15. Ma, X., & Ye, L. (2018). Career goal-based e-learning recommendation using enhanced collaborative filtering and prefixspan. *International Journal of Mobile and Blended Learning (IJMBL)*, 10(3), 23–37. <https://doi.org/10.4018/IJMBL.2018070103>
16. Martínez-Tenor, Á., Cruz-Martín, A., & Fernández-Madrigal, J.-A. (2019). Teaching machine learning in robotics interactively: the case of reinforcement learning with Lego® Mindstorms. *Interactive Learning Environments*, 27(3), 293–306. <https://doi.org/10.1080/10494820.2018.1525411>
17. Mehmood, R. M., & Lee, H. J. (2017). Towards building a computer aided education system for special students using wearable sensor technologies. *Sensors*, 17(2), 317. <https://doi.org/10.3390/s17020317>
18. Mondragon, A. L., Nkambou, R., & Poirier, P. (2016). Towards an affective tutoring agent in specialized education. In International Conference on Intelligent Tutoring Systems (pp. 402–408). [https://doi.org/10.1007/978-3-319-39583-8\\_48](https://doi.org/10.1007/978-3-319-39583-8_48)
19. Muljono, M., Afini, U., Supriyanto, C., & Nugroho, R. A. (2017). The Development of Indonesian POS tagging system for computer-aided independent language learning. *International Journal of Emerging Technologies in Learning (IJET)*, 12(11), 138–150. <https://doi.org/10.3991/ijet.v12i11.7383>
20. Olive, D. M., Huynh, D. Q., Reynolds, M., Dougiamas, M., & Wiese, D. (2019). A Quest for a one-size-fits-all neural network: Early prediction of students at risk in online courses. *IEEE Transactions on Learning Technologies*, 12(2), 171–183. <https://doi.org/10.1109/TLT.2019.2911068>
21. Rashid, T. A., & Ahmad, H. A. (2016). Lecturer performance system using neural network with Particle Swarm Optimization. *Computer Applications in Engineering Education*, 24(4), 629–638. <https://doi.org/10.1002/cae.21737>
22. Roberts, M. E., Stewart, B. M., & Tingley, D. (2019). Stm: An R package for structural topic models. *Journal of Statistical Software*, 91(2), 1–40. <https://doi.org/10.18637/jss.v091.i02>
23. Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. *International Journal of Artificial Intelligence in Education*, 26(2), 582–599. <https://doi.org/10.1007/s40593-016-0110-3>
24. Samoilescu, R.-F., Dascalu, M., Sirbu, M.-D., Trausan-Matu, S., & Crossley, S. A. (2019). Modeling collaboration in online conversations using time series analysis and dialogism. *International Conference on Artificial Intelligence in Education* (pp. 458–468). [https://doi.org/10.1007/978-3-030-23204-7\\_38](https://doi.org/10.1007/978-3-030-23204-7_38)
25. Sato, T., Ogura, M., Aota, S., & Burden, T. (2018). Examining the impact of an automated translation chatbot on online collaborative dialog for incidental L2 learning. In P. Taalas, J. Jalkanen, L. Bradley & S. Thouesny (Eds.), *Future-Proof CALL: Language Learning as Exploration and Encounters—Short Papers from EUROCALL 2018* (pp. 284–289).
26. Shibata, C., Ando, K., & Inaba, T. (2017). Towards automatic coding of collaborative learning data with deep learning technology. *eLmL 2017: The Ninth International Conference on Mobile, Hybrid, and On-line Learning* (pp. 65–71). Nice, France: IARIA.
27. Su, S.-H., Lin, H.-C. K., Wang, C.-H., & Huang, Z.-C. (2016). Multi-modal affective computing technology design the interaction between computers and human of intelligent tutoring systems. *International Journal of Online Pedagogy and Course Design (IJOPCD)*, 6(1), 13–28.
28. Sun, Q., & Winoto, P. (2019). An Intelligent LEGO tutoring system for children with autism spectrum disorder. In 2019 the International Conference on Pattern Recognition and Artificial Intelligence (pp. 56–59).
29. Tang, K. Y., Chang, C. Y., & Hwang, G. J. (2021). Trends in artificial intelligence-supported e-learning: A Systematic review and co-citation network analysis (1998–2019). *Interactive Learning Environments*, 1–19.
30. Tsai, S. C., Chen, C. H., Shiao, Y. T., Ciou, J. S., & Wu, T. N. (2020). Precision education with statistical learning and deep learning: a case study in Taiwan. *International Journal of Educational Technology in Higher Education*, 17(1), 1–13.
31. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—where are the educators?
32. International Journal of Educational Technology in Higher Education, 16(1), 1–27.
33. Zhang, R., & Zou, D. (2020). Types, purposes, and effectiveness of state-of-the-art technologies for second and foreign language learning. *Computer Assisted Language Learning*, 1–47.
34. White House Office of Science and Technology Policy (October 2022), Blueprint for an AI bill of rights: Making automated systems work for the American

people. The White House Office of Science and Technology Policy. <https://www.whitehouse.gov/ostp/ai-bill-of-rights/>

35. Winne, P.H. (2021). Open learner models working in symbiosis with self-regulating learners: A research agenda. *International Journal of Artificial Intelligence in Education*, 31(3), 446-459.
36. Zacamy, J. & Roschelle, J. (2022). Navigating the tensions: How could equity-relevant research also be agile, open, and scalable? *Digital Promise*.
37. Zhai, X., He, P., Krajcik, J. (2022). Applying machine learning to automatically assess scientific models. *Journal of Research in Science Teaching*.
38. Zhang, H., Lee, I., Ali, S., DiPaola, D., Cheng, Y., & Breazeal, C. (2022). Integrating ethics and career futures with technical learning to promote AI literacy for middle school students: An exploratory study. *International Journal of Artificial Intelligence in Education*, 1-35.
39. Wagner, A.R., Borenstein, J. & Howard, A. (September 2018). Overtrust in the robotics age. *Communications of the ACM*, 61(9), 22-24.
40. Walker, E., Rummel, N. & Koedinger, K.R. (2015). Adaptive intelligent support to improve peer tutoring in algebra. *International Journal of Artificial Intelligence in Education*, 24, 33-61
41. Walton Family Foundation (March 1, 2023). Teachers and students embrace ChatGPT for education.
42. The White House (September 8, 2022). Readout of White House listening session on tech platform accountability.
43. U.S. Department of Education, Office of Educational Technology (2022). Advancing digital equity for all: Community-based recommendations for developing effective digital equity plans to close the digital divide and enable technology-empowered learning. US Department of Education.
44. Ruiz, P. & Fusco, J. (2022). Teachers partnering with artificial intelligence: Augmentation and automation. *Digital Promise*.
45. Russell, S. (2019). *Human compatible: Artificial intelligence and the problem of control*. Viking.
46. Shao, Q., Sniffen, A., Blanchet, J., Hillis, M.E., Shi, X., Haris, T.K., & Balkcom, D. (2020). Teaching american sign language in mixed reality. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 4(4), 1-27. <https://doi.org/10.1145/3432211>
47. Sharples, M. & Pérez y Pérez, R. (2022). *Story machines: How computers have become creative writers*. Routledge. ISBN 9780367751951
48. Shemshack, A., Spector, J.M. (2020) A systematic literature review of personalized learning terms. *Smart Learning Environments*, 7(33). <https://doi.org/10.1186/s40561-020-00140-9>
49. Akgun, S., Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. *AI Ethics*, 2, 431-440. <https://doi.org/10.1007/s43681-021-00096-7>
50. Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2016). Instruction based on adaptive learning technologies. In Mayer, R.E. & Alexander, P.A., *Handbook of research on learning and instruction*, 522-560. ISBN: 113883176X
51. Baker, R.S., Esbenshade, L., Vitale, J., & Karumbaiah, S. (2022). Using demographic data as predictor variables: A questionable choice. <https://doi.org/10.35542/osf.io/y4wyj>
52. Boden, M.A. (2018). *Artificial intelligence: A very short introduction*. Oxford. ISBN: 978-0199602919
53. Bryant, J., Heitz, C., Sanghvi, S., & Wagle, D. (2020, January 14). How artificial intelligence will impact K-12 teachers. McKinsey.
54. Celik, I., Dindar, M., Muukkonen, H. & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. *TechTrends*.
55. Center for Integrative Research in Computing and Learning Sciences (CIRCLS). (2022, Feb.). From Broadening to empowering: Reflecting on the CIRCLS'21 Convening. <https://circls.org/circls21report>
56. Chen, C., Park, H.W. & Breazeal, C. (2020). Teaching and learning with children: Impact of reciprocal peer learning with a social robot on children's learning and emotive engagement. *Computers & Education*, 150, <https://doi.org/10.1016/j.compedu.2020.103836>
57. Dieterle, E., Dede, C. & Walker, M. (2022). The cyclical ethical effects of using artificial intelligence in education. *AI & Society*. <https://link.springer.com/article/10.1007/s00146-022-01497-w>
58. Doewes, A. & Pechenizkiy, M. (2021). On the limitations of human-computer agreement in automated essay scoring. In *Proceedings of the 14th International Conference on Educational Data Mining (EDM21)*. [https://educationaldatamining.org/EDM2021/virtual/statistics/pdf/EDM21\\_paper\\_243.pdf](https://educationaldatamining.org/EDM2021/virtual/statistics/pdf/EDM21_paper_243.pdf)
59. Ersozlu, Z., Ledger, S., Ersozlu, A., Mayne, F., & Wildy, H. (2021). Mixed-reality learning environments in teacher education: An analysis of TeachLivETM Research. *SAGE Open*, 11(3). <https://doi.org/10.1177/21582440211032155>.
60. European Commission, Directorate-General for Education, Youth, Sport and Culture. (2022). Ethical guidelines on the use of artificial intelligence (AI) and data in teaching and learning for educators. Publications Office of the European Union.
61. Forsyth, S., Dalton, B., Foster, E.H., Walsh, B., Smilack, J., & Yeh, T. (2021, May). Imagine a more ethical AI: Using stories to develop teens' awareness and understanding of artificial intelligence and its societal impacts. In *2021 Conference on Research in Equitable and Sustained Participation in Engineering, Computing, and Technology (RESPECT)*. IEEE.
62. Friedman, L., Blair Black, N., Walker, E., & Roschelle, J. (November 8, 2021) Safe AI in education needs you. Association of Computing Machinery.
63. Maponga, M., (2024). The Penetration of Mobile Technology in Schools. A case of selected schools in Mazowe District. *IRASS Journal of Multidisciplinary Studies*. 1(3)25-36.